Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer
Vol. 25, No. 1, November 2025, pp. 173~188
ISSN: 2476-9843, accredited by Kemenristekdikti, Decree No: 10/C/C3/DT.05.00/2025

DOI: 10.30812/matrik.v25i1.5610

o 173

Cyber Threat Detection and Automated Response Using Wazuh and

Telegram API

Yuri Ariyanto*, Yan Watequlis Syaifudin, M. Hasyim Ratsanjani, Ali Ridho Muladawila, Triana Fatmawati, Pramana Yoga

Saputra, Chandrasena Setiadi
Politeknik Negeri Malang, Malang, Indonesia

Article Info

ABSTRACT

Article history:

Received August 27, 2025
Revised October 05, 2025
Accepted November 17, 2025

Keywords:

Cyber Threat Detection,
Network Security;
PPDIOO;

SIEM;

Wazuh.

Cyber threats are becoming more widespread, notably those that use SSH to brute-force their way in
or engage in Distributed Denial of Service attacks. These attacks can make networked systems very
hard to reach, keep their data safe, and protect their privacy, especially for small and medium-sized
organizations that can’t afford pricey professional security solutions. This research aims to develop
an automated, cost-effective, and scalable cyber threat detection and response system for small and
medium-sized organizations unable to afford commercial-grade security solutions. The methodol-
ogy follows the structured Prepare, Plan, Design, Implement, Operate, Optimize lifecycle, leveraging
open-source technologies, primarily the Wazuh Security Information and Event Management plat-
form, augmented with custom detection rules and a Random Forest-based classification module to
distinguish Normal, Brute Force, and Distributed Denial of Service traffic patterns. Experimental re-
sults demonstrate a Mean Time to Detect of 4.7 seconds for Brute Force and 7.3 seconds for Distributed
Denial of Service, with a Mean Time to Respond of 8.2 seconds and under 10 seconds, respectively.
The system achieved 98.4% detection accuracy and a 1.5% false positive rate across 100 controlled
tests using THC Hydra and slowhttptest. Integration of Wazuh dashboard analytics with real-time
Telegram alerts enhances situational awareness and enables prompt, automated incident response, val-
idating open-source frameworks as viable defenses in resource-constrained environments.

Copyright ©2025 The Authors.
This is an open access article under the CC BY-SA license.

©Nole

Corresponding Author:

Yuri Ariyanto, +628563302542,
Department of Information Technology,

Politeknik Negeri Malang, Malang, Indonesia,

Email: yuri@polinema.ac.id.

How to Cite:

Y. Ariyanto, "Cyber Threat Detection and Automated Response Using Wazuh and Telegram API”, MATRIK: Jurnal Manajemen,
Teknik Informatika, dan Rekayasa Komputer, Vol. 25, No. 1, pp. 173-188, November, 2025.
This is an open access article under the CC BY-SA license (https://creativecommons.org/licenses/by-sa/4.0/)

Journal homepage: https://journal.universitasbumigora.ac.id/index.php/matrik

accredited by Kemenristekdikti, Decree No: 10/C/C3/DT.05.00/2025
https://creativecommons.org/licenses/by-sa/4.0/
mailto:yuri@polinema.ac.id.
https://creativecommons.org/licenses/by-sa/4.0/
https://journal.universitasbumigora.ac.id/index.php/matrik

174 O3 ISSN: 2476-9843

1. INTRODUCTION

Cyber threats are becoming increasingly sophisticated and prevalent, particularly SSH-based brute-force and distributed denial-
of-service (DDoS) attacks. These assaults are particularly bad for the security, privacy, and availability of modern network infras-
tructures [1, 2]. These attacks often allow unauthorized users to access systems, cause lengthy service interruptions, and steal private
information. This costs a lot of money, gets people in trouble with the law, and destroys their reputations [3]. Perimeter firewalls and
antivirus systems that rely on signatures are becoming less and less useful at finding and stopping threats that change all the time and
are hard to detect, especially in places where there isn’t much security knowledge or money [4]. In this case, Security Information
and Event Management (SIEM) systems are needed to link logs in real time, discover strange behavior, and plan how to respond to
occurrences [5]. Wazuh is now a powerful and flexible open-source SIEM platform. It offers built-in tools for host-based intrusion
detection (HIDS), file integrity monitoring, vulnerability evaluation, and automating active responses [6]. It is a wonderful solution
for small and medium-sized enterprises (SMEs) that don’t have the money to buy pricey commercial SIEM suites but are still prime
targets for opportunistic cyberattacks. This is because it has a modular design and works with numerous types of systems [7]. But the
operational efficiency of any SIEM system depends not only on how efficiently it analyzes data, but also on how well it combines with
other security technologies, such as Fail2Ban for banning dynamic IP addresses and real-time notification channels like the Telegram
APIL. This is to cut down on the time it takes to find and address threats and the need for people to get involved [8]. This connection
is especially crucial for small and medium-sized organizations (SMEs) because they don’t have the means to respond fast to issues,
which might lead to a breach of the whole system.

This research contributes to the field by proposing and implementing an integrated, automated cybersecurity framework that
combines Wazuh with Fail2Ban for dynamic IP blocking and Telegram API for instant administrative notifications [9, 10]. The system
is developed following the PPDIOO (Prepare, Plan, Design, Implement, Operate, Optimize) methodology, ensuring a structured
and industry-aligned development lifecycle [11]. The integration of Fail2Ban enhances the system’s active response capability by
automatically blocking malicious IP addresses after repeated failed authentication attempts, while the Telegram API ensures that
security alerts are delivered promptly to administrators, enabling faster decision-making [12, 13]. Furthermore, a machine learning-
based attack classification module is incorporated to categorize threats into Normal, Brute Force, and DDoS categories, thereby
improving the interpretability and prioritization of alerts [14, 15]. This study not only demonstrates the technical feasibility of such
an integration but also evaluates its performance in terms of Mean Time to Detect (MTTD) and Mean Time to Respond (MTTR),
providing empirical evidence of its effectiveness in mitigating common cyber threats [? 16].

Some gaps have not been resolved by previous research, namely the limited integration of real-time automated response
mechanisms with actionable alerting in open-source SIEM systems tailored for resource-constrained environments, particularly small
and medium-sized organizations [17-19]. The difference between this research and the previous one is that it combines Wazuh’s
detection capabilities with Fail2Ban for dynamic IP blocking and Telegram API for instant, human-readable notifications within
a structured PPDIOO lifecycle, further enhanced by a machine learning—based classifier to distinguish Normal, Brute Force, and
DDoS traffic patterns, thereby improving detection precision and reducing false positives. This study explicitly aims to deliver a
cost-effective, modular, and operationally efficient cybersecurity framework that bridges the gap between academic threat detection
models and practical deployment in real-world infrastructures. Its contribution lies in demonstrating that open-source tools, when
cohesively engineered, can accurately estimate MTTD and MTTR while maintaining high accuracy and low false-positive rates,
offering both scientific value in SIEM optimization and practical benefit for SMEs lacking commercial-grade defenses.

The organization of this journal follows a logical structure: Section 1 introduces the cybersecurity challenges and the role
of SIEM systems, highlighting the research objectives and contributions. Section 2 presents the research methodology, including
system architecture, component design, and implementation phases based on the PPDIOO framework. Section 3 discusses the results
and analysis, focusing on detection accuracy, response automation, and notification reliability. Section 4 provides a comprehensive
discussion of the findings, comparative analysis with existing solutions, and practical implications. Finally, Section 5 concludes the
study with key findings and recommendations for future enhancements.

2. RESEARCH METHOD

This research adopts a systematic systems engineering approach, leveraging the PPDIOO (Prepare, Plan, Design, Implement,
Operate, Optimize) methodology developed by Cisco [5]. The PPDIOO framework is chosen due to its iterative and comprehensive
nature, making it highly relevant for developing network security systems based on Security Information and Event Management
(SIEM). This methodology ensures that planning, design, implementation, operation, and optimization are conducted in a structured
manner, ultimately leading to an effective and sustainable solution, as illustrated in Figure 1.

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer,
Vol. 25, No. 1, November 2025: 173 — 188

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer g 175

Optimize Plan

Operate Design

Implement

Figure 1. Ppdioo methodology

The PPDIOO methodology serves as the systematic framework guiding the development of the SIEM-based network security
system [20-22]. Each phase of the methodology plays a critical role in ensuring the robustness and effectiveness of the system:

2.1. Prepare

The preparation phase begins with identifying the need for a responsive threat detection system, driven by observations of
increasing incidents of cyberattacks such as Brute Force and Distributed Denial of Service (DDoS) in public server environments.
An initial analysis of potential attack vectors is conducted to define the scope of the research, the system’s objectives, and relevant
supporting technologies. This foundational step ensures that the subsequent phases are grounded in real-world requirements and
challenges. Key Activities in the Prepare Phase:

a. Identification of Cybersecurity Needs: Based on observed trends in cyber threats, particularly Brute Force and DDoS attacks,
the research team identified the necessity for a proactive and automated response system.

b. Initial Threat Analysis: A preliminary assessment of potential attack vectors was conducted to determine the types of threats
the system would need to detect and respond to effectively.

c. Technology Selection Criteria: Key criteria were established for selecting open-source technologies that could provide real-
time monitoring, intrusion detection, and automated response capabilities.

The preparation phase marks the foundational stage of the research, initiated with the identification of a critical need for a
responsive threat detection system. This need arises from the observed surge in cyberattacks, particularly Brute Force and Distributed
Denial of Service (DDoS), targeting public server environments. These attacks pose significant risks to system availability, integrity,
and confidentiality, necessitating a proactive and automated defense mechanism. A preliminary threat analysis was conducted to
map potential attack vectors, focusing on common exploitation techniques such as repeated authentication attempts and network
resource exhaustion. This analysis informed the scope of the research, which is centered on developing a real-time, open-source-
based Security Information and Event Management (SIEM) system capable of detecting, alerting, and responding to these threats.
Based on these findings, clear technology selection criteria were established, emphasizing open-source solutions with robust log
analysis, active response, and real-time notification capabilities. The outcome of this phase is a well-defined problem statement
and a set of functional requirements that guide subsequent planning and design, ensuring the system’s relevance and applicability to
real-world cybersecurity challenges, as described in Table 1.

Table 1. Key Activities and Outcomes in the Prepare Phase

Activity

Description

Outcome

Identification of Cybersecurity Needs
Initial Threat Analysis

Technology Selection Criteria

Analysis of rising cyberattack trends on public
servers.

Assessment of attack vectors, such as Brute-Force and
DDoS.

Establishment of criteria for open-source tools (real-
time monitoring, active response, scalability).

Recognition of the necessity for an automated threat
detection and response system.

Definition of the primary threat types the system must
address.

A framework for selecting Wazuh, Fail2Ban, and
Telegram API in the planning phase.

2.2. Plan

In the planning phase, the architectural framework and implementation strategy for the integrated security system were metic-

ulously defined to ensure technical coherence and operational effectiveness. The core technological components selected for deploy-
ment include Wazuh, an open-source Security Information and Event Management (SIEM) platform renowned for its capabilities

Cyber Threat Detection . . . (Yuri Ariyanto)

176 O3 ISSN: 2476-9843

in log-based intrusion detection and real-time system behavior analysis; Fail2Ban, a robust utility designed to automatically block
malicious IP addresses following patterns of repeated authentication failures; and the Telegram API, which serves as a real-time
notification channel to ensure administrators receive critical security alerts promptly and can initiate immediate response actions.
This strategic selection of components was guided by the need for interoperability, scalability, and real-time responsiveness, forming
the foundational triad upon which the automated detection and response pipeline is constructed.

Additionally, a testing plan was developed, incorporating simulations of brute-force attacks with THC Hydra and DDoS attacks
with tools such as hping3 and slowhttptest. Integration schemes between components and performance evaluation methods were also
outlined during this phase. Key Activities in the Plan Phase:

a. Technology Selection: Wazuh was chosen as the primary SIEM platform due to its ability to integrate various security mod-
ules, including log-based detection, active response mechanisms, and notifications. Fail2Ban was selected for its ability to
automatically block malicious IP addresses, while the Telegram API provided real-time alerting.

b. Testing Strategy Development: Simulations of Brute Force and DDoS attacks were planned to evaluate the system’s detection
and response capabilities under realistic conditions.

c. Integration Planning: Detailed plans were created to ensure seamless integration between Wazuh, Fail2Ban, and Telegram API,
forming a cohesive security pipeline.

The planning phase established a comprehensive testing strategy to evaluate the system’s efficacy against realistic cyber threats,
specifically Brute Force and Distributed Denial of Service (DDoS) attacks. Brute Force attacks on SSH were simulated using THC
Hydra with a dictionary-based approach (hydra -L username.txt -P password.txt ssh://[TARGET_IP]). DDoS simulations employed
hping3 for a SYN flood attack (hping3 -S -p 80 —flood [TARGET_IP]) and slowhttptest for a Slowloris attack, effectively replicating
credential-guessing and resource-exhaustion scenarios. A detailed test plan was developed to ensure reproducibility, defining attack
parameters and success criteria. The integration of Wazuh, Fail2Ban, and Telegram API was designed to form a cohesive pipeline,
with performance to be assessed using Mean Time to Detect (MTTD) and Mean Time to Respond (MTTR) metrics, as described in
Table 2.

Table 2. Attack Simulation Tools and Commands

Attack Tool Command
Brute Force (SSH) THC Hydra hydra -L username.txt -P password.txt ssh://[TARGET_IP]
DDoS (SYN Flood) hping3 hping3 -S -p 80 —flood [TARGET_IP]

DDoS (Slowloris) slowhttptest slowhttptest -c 1000 -H -g -o slowhttp -i 10 -r 200 -t GET -u http://[TARGETIP] -x 24 -p 3

2.3. Design

The design phase focused on creating an integrated architecture that included:
. Wazuh Server: Serving as the central hub for collecting, analyzing, and storing security logs.
. Wazuh Agent: Installed on endpoints to forward log data to the Wazuh Server.
. Dashboard: Providing a visual interface for monitoring and analyzing security events.
. Fail2Ban Integration: Automatically blocking IP addresses detected as malicious by Wazuh.
. Telegram Bot: Sending real-time notifications to administrators via Telegram APIL

The system architecture was designed to enable secure, encrypted, and centralized communication among all components,
ensuring data integrity and real-time information flow. A key aspect of the design phase was integrating a machine learning-based
classification module to improve the accuracy and reliability of threat detection. To address Brute Force and DDoS attack identifica-
tion, a supervised learning approach was adopted using the Random Forest algorithm, which is widely recognized for its effectiveness
in network intrusion detection due to its ability to handle high-dimensional data, resist overfitting, and provide interpretable feature
importance. The model was trained on a labeled dataset derived from system logs collected during controlled attack simulations,
comprising normal traffic, SSH-based Brute-Force attempts (simulated using THC Hydra), and application-layer DDoS patterns
(generated using slowhttptest). Features such as failed login frequency, source IP connection rate, session duration, and request en-
tropy were extracted and used as input vectors. The dataset was split into 70% for training and 30% for testing, with cross-validation
applied to ensure model robustness. Once trained, the classifier was integrated into the detection pipeline to categorize incoming
security events into "Normal,” ”Brute Force,” or "DDoS” classes in real time. This classification mechanism not only enhanced
alert precision but also reduced false positives, enabling faster event correlation and supporting the system’s ability to achieve low
Mean Time to Detect (MTTD) and Mean Time to Respond (MTTR). By combining rule-based detection in Wazuh with machine-
learning-driven analysis, the system achieved more adaptive, intelligent responses, facilitating timely mitigation and post-incident

o Qa0 o

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer,
Vol. 25, No. 1, November 2025: 173 — 188

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer a 177

evaluation.

To quantitatively evaluate system performance and enable intelligent threat classification, formalized metrics and a machine
learning model were integrated into the design. The MTTD is computed as the average interval between the initiation of an attack
and the generation of the first corresponding alert, as in 1.

N

1
MTTD = N Zl(tdetect,i - tattact,start,i) (1)

Where N denotes the number of test iterations, #getect,; 18 the detection timestamp, and tq¢¢qct_start,i 15 the attack onset time.
Similarly, the MTTR is defined as the average delay between detection and the execution of an automated mitigation action, as in (2).

N
1
MTTD = N E(trcspond,i - tdetcct,i) (2)

For threat categorization, a Random Forest classifier was implemented to distinguish among Normal, Brute Force, and DDoS
traffic patterns. Given an input feature vector x for example, failed login frequency, source IP connection rate, and request entropy,
the ensemble model aggregates predictions from K decision trees 74,75, . . ., Tk trained using bootstrap sampling, and uses majority
vote to choose the final class, as in (3).

K

y= argmaxec(nomnal,BruteFov"ce,DDos) Z(Tk (1') - C) (3)
k=1

2.4. Implement

The implementation phase involved installing and configuring all system components in accordance with the designed archi-
tecture. Verification of functionalities, including log collection, threat detection based on custom rulesets, automatic IP blocking by
Fail2Ban, and real-time notifications via Telegram, was conducted. Simulated attacks were executed to test the system’s resilience
and record its responses. Key Activities in the Implement Phase:

a. Component Installation and Configuration: The Wazuh Manager and Wazuh Agents were installed and configured across the
target environment. Custom rulesets were added to the local_rules.xml file to detect specific patterns of Brute Force and DDoS
attacks.

b. Integration Testing: The integration between Wazuh, Fail2Ban, and Telegram API was rigorously tested to ensure smooth oper-
ation. For example, simulated brute force attacks using THC Hydra were monitored in real-time by Wazuh, and corresponding
alerts were sent to administrators via Telegram.

c. Performance Validation: The system’s ability to detect and respond to simulated attacks was validated through controlled
experiments, demonstrating its effectiveness in handling both Brute Force and DDoS scenarios.

2.5. Operate

During the operational phase, the system was run in a live environment to continuously monitor security activities. Logs
were collected and displayed in graphical and tabular formats on the Wazuh dashboard, and real-time notifications were sent to
administrators whenever suspicious activity was detected. Monitoring ensured the system operated optimally, responded quickly, and
did not degrade server performance. Key Activities in the Operate Phase:

a. Real-Time Monitoring: The Wazuh dashboard provided administrators with a comprehensive view of security events, allowing
them to identify and address potential threats promptly.

b. Notification Delivery: Telegram API ensured that critical alerts were delivered instantly to administrators, enabling faster
incident response times.

c. Performance Oversight: Continuous monitoring helped maintain system stability and efficiency, ensuring that the implemented
solution remained effective over time.

Cyber Threat Detection . . . (Yuri Ariyanto)

178 O3 ISSN: 2476-9843

2.6. Optimize

The final phase, optimization, involved evaluating system performance using key metrics such as Mean Time to Detect
(MTTD), Mean Time to Respond (MTTR), detection accuracy, and inter-component communication efficiency. Feedback from
these evaluations was used to refine the system’s configuration and improve its overall effectiveness. Key Activities in the Optimize
Phase:

a. Performance Metrics Evaluation: MTTD and MTTR were measured to assess how quickly the system detected and responded
to threats. Detection accuracy was evaluated using machine learning models, and communication efficiency was analyzed to
ensure seamless integration between components.

b. Iterative Improvement: Based on the evaluation results, adjustments were made to the rule set, classification parameters, and
technical infrastructure to enhance system performance in future iterations.

c. Validation Process: Quantitative and qualitative analyses were conducted to validate the system’s effectiveness. Quantitative
analysis included metrics such as MTTD, MTTR, and detection accuracy, while qualitative analysis focused on subjective
factors such as dashboard usability, alert clarity, and the effectiveness of Telegram notifications.

To validate the system’s effectiveness, several adjustments were made based on the evaluation results. These adjustments
included refining the detection rule set, optimizing classification parameters, and enhancing technical infrastructure. The validation
process utilized both quantitative and qualitative approaches.

Quantitative Analysis:

Mean Time to Detect (MTTD): Measured the time taken by the system to detect an attack after it began.

. Mean Time to Respond (MTTR): Evaluated the time required for the system to take action after detecting an attack.

. Detection Accuracy: Assessed the system’s ability to classify different types of attacks correctly.

. IP Blocking Effectiveness: Verified the efficiency of Fail2Ban in automatically blocking malicious IP addresses.

Quantitative Analysis:

a. Dashboard Usability: Evaluated the ease of use and intuitiveness of the Wazuh dashboard for monitoring and managing security
events.

b. Alert Clarity: Assessed the comprehensibility and relevance of alert messages generated by the system.

c. Telegram Notification Efficacy: Determined whether real-time notifications via Telegram were timely and actionable for ad-
ministrators.

fao o

The validation results were obtained from a carefully planned experimental protocol that objectively tested whether the system
met its main research goals: to create an open-source, modular, and responsive cybersecurity framework for small- to medium-sized
infrastructure. The evaluation used a mixed-methods framework, combining quantitative performance metrics and replicable attack
simulations. In particular, 100 controlled test iterations were carried out: 50 for SSH-based Brute-Force attacks using THC Hydra
and 50 for application-layer DDoS attacks using slowhttptest under uniform network conditions to ensure reliability.

The PPDIOO (Prepare, Plan, Design, Implement, Operate, Optimize) methodology was applied systematically to create a
robust framework for the entire development lifecycle. This made sure that theoretical security principles and practical implemen-
tation were in sync. The methodology improved the technical coherence and operational validity of the solution by organizing each
phase, from threat modeling and component selection to deployment, monitoring, and iterative refinement. The important thing is
that Wazuh served as the main SIEM platform, Fail2Ban for automated IP-based mitigation, and the Telegram API for real-time
alerting. This showed that open-source tools can be combined to build a robust, high-performance defense pipeline. This method not
only meets the study’s goal of providing a cost-effective, scalable security architecture for environments with limited resources but
also creates a framework that can be reused for future open-source SIEM deployments, especially when quick detection, automated
response, and administrator situational awareness are key.

3. RESULT AND ANALYSIS

The findings of this research are that the proposed integrated cyber threat detection and response system, comprising Wazuh
as the core SIEM platform, Fail2Ban for dynamic IP blocking, and the Telegram API for real-time alerting, achieves high detection
accuracy and sub-10-second response times against SSH-based Brute Force and application-layer DDoS attacks. Specifically, the
system demonstrated an MTTD of 4.7 seconds for Brute Force attacks and 7.3 seconds for DDoS attacks, with corresponding MTTR
values of 8.2 seconds and under 10 seconds, respectively. Furthermore, it achieved an overall detection accuracy of 98.4% and a
false-positive rate of only 1.5% across 100 controlled test iterations, confirming its operational reliability and precision in real-world
threat scenarios. The results of this research align with or support recent studies that emphasize the efficacy of open-source SIEM

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer,
Vol. 25, No. 1, November 2025: 173 — 188

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer o 179

platforms when augmented with automated response mechanisms and external notification channels. For example, it was shown
that in resource-constrained contexts, incident response latency can be significantly reduced by appropriately integrating open-source
SIEM solutions with complementary technologies, such as Fail2Ban. Similar findings were made regarding enhanced administrator
situational awareness and detection performance in Wazuh installations using Telegram-based alerting, supporting the importance of
real-time communication in boosting cybersecurity resilience. These earlier results support our design decisions and highlight the
usefulness of our strategy for small- and medium-sized businesses seeking powerful yet reasonably priced defenses against common
cyber threats.

Building upon these empirical and literature-supported outcomes, this section presents a detailed account of the implementation
and evaluation of the system above. The assessment was conducted through controlled, repeatable attack simulations targeting
two common threat vectors: SSH-based Brute Force and application-layer DDoS attacks. Well-established open-source tools were
employed to emulate real-world adversarial tactics, THC Hydra for systematic credential guessing and slowhttptest for Slowloris-
style resource exhaustion. The evaluation specifically examined three core operational capabilities: real-time detection of malicious
behavior, automated remediation via IP blacklisting, and the immediate delivery of actionable alerts to security personnel through the
Telegram APL

To maintain methodological integrity, a mixed-methods evaluation framework was utilized, integrating quantitative perfor-
mance metrics with qualitative insights regarding system usability and operational utility. Key performance indicators, such as Mean
Time to Detect (MTTD), Mean Time to Respond (MTTR), detection accuracy, and false-positive rate (FPR), indicated that the system
performed very well. For Brute Force attacks, the MTTD was 4.7 seconds, and for DDoS attacks, it was 7.3 seconds. The MTTR
was 8.2 seconds and under 10 seconds, respectively. The detection accuracy was 98.4% with an FPR of 1.5% after 100 tests (50 per
attack type). This was made possible by combining custom Wazuh rules with a Random Forest-based classification module. The
Wazuh dashboard’s visual analytics, such as alert timelines, severity heatmaps, and agent connectivity status, made it much easier
to understand what was happening. Telegram also ensured that high-severity alerts (level > 10) reached administrators within 2-3
seconds. The study acknowledges significant limitations: the threat scope is confined to Brute Force and DDoS attacks, omitting
advanced threats such as APTs or zero-day exploits; the machine learning model is based on a restricted, simulation-driven dataset;
and Fail2Ban’s static blocking mechanism lacks contextual intelligence, which may impact users sharing IP addresses. These limi-
tations indicate opportunities for future work, such as behavioral analytics, threat intelligence integration, and testing in cloud-native
environments. However, they also show that the system is a useful, scalable, open-source defense solution for small to medium-sized
businesses.

The developed system features a modular, integrated architecture that leverages open-source technologies, as illustrated in
Figure 2. The core components include the Wazuh Manager, which serves as the central hub for log processing, security analysis, and
data storage; Wazuh Agents deployed on target endpoints to collect and forward system logs; Fail2Ban, which automatically blocks
malicious IP addresses exhibiting patterns of repeated failed authentication attempts; and the Telegram Bot API, which functions
as a real-time notification channel for critical security alerts. The Wazuh Dashboard provides a comprehensive visual interface for
monitoring logs, alert trends, and system performance metrics, enabling efficient situational awareness.

Linux Ubuntu

m Wazuh

W l dashboard
Brule force g (\‘\
attack hydra .* {‘:;_o-} w
I~
I; L
VPS

Aftacker Kali Linux Wazuh Log and

manager rule set analysis

|

Telegram
notification

0y,

Wazuh Agent
read log file

Figure 2. Cyber threat detection architecture design

Cyber Threat Detection . . . (Yuri Ariyanto)

180 O3 ISSN: 2476-9843

A dedicated attack classification module, implemented using a machine learning algorithm, categorizes detected threats into
three classes: Normal, Brute Force, and DDoS. This classification enhances the interpretability of alerts and supports post-incident
analysis. The architecture ensures secure, encrypted, and centralized communication between all components, providing full visibility
into network activities and potential threats.

As a detailed example dataset in Table 3, the dataset used in this study consists of 30 security event records extracted from the
Wazuh alerts.log file during the testing phase. These entries represent alerts generated by the host-based intrusion detection system
in response to simulated attacks. The data encompasses various suspicious activities, including login attempts for non-existent users,
repeated failed authentications, and brute-force attacks initiated by tools such as Hydra. Each record contains essential information,
including timestamp, source IP address, targeted username, severity level, rule description, and attack type. The structured and
consistently categorized nature of the dataset enables in-depth analysis of cyber threat patterns, particularly those targeting SSH
services. This dataset provides a reliable representation of common exploitation attempts, making it highly relevant for evaluating
the effectiveness of the implemented detection and response mechanisms.

Table 3. Security Alert Log Analysis

Alert ID Rule ID Severity Rule Description Source IP Source Port Username Agent Name Attack Type
1.756.143.126.185.410 5710 5 sshd: Attempt to 196.251.83.55 33250 elastic admin.wazuh.com Invalid User
login using a non-
existent user
1.756.143.302.198.870 5710 5 sshd: Attempt to 196.251.83.55 42260 elastic admin.wazuh.com Invalid User
login using a non-
existent user
1.756.143.384.204.080 5710 5 sshd: Attempt to 115.76.222.221 38026 ftpuser admin.wazuh.com Invalid User
login using a non-
existent user

1.756.143.486.216.000 5503 5 PAM: User login 45.88.8.186 - root admin.wazuh.com Failed Login
failed
1.756.143.558.223.090 5710 5 sshd: Attempt to 196.251.83.55 55364 elastic admin.wazuh.com Invalid User

login using a non-
existent user

In Table 1, each Wazuh alert includes key metadata for effective incident analysis. The Alert ID uniquely identifies each
security event, while the Rule ID indicates the specific detection rule that triggered it. Severity, ranging from 1 to 15, reflects the
threat level; values of 10 or higher indicate serious incidents such as brute-force attacks. The Rule Description provides a clear
explanation of the detected activity. Source IP and Source Port identify the origin of the attack, and Username specifies the targeted
account. The Agent Name indicates the Wazuh endpoint that reported the event, and Attack Type categorizes the incident for quick
identification and response.

The implementation of the security system began with installing Wazuh Manager, Wazuh Agent, Fail2Ban, and the Telegram
Bot API. The deployment was carried out on an Ubuntu 22.04 LTS server environment, where Wazuh Manager served as the central
control and monitoring hub. After installing all components, custom rules were added to the local_rules.xml file to detect patterns
associated with Brute Force and DDoS attacks. Fail2Ban was configured by updating the jail. local file, ensuring that it automatically
blocks TP addresses whenever Wazuh detects a potential attack. Real-time notifications via Telegram were integrated through a
Python script (custom-telegram.py), which was linked to Wazuh Manager via the ossec.conf configuration file.

The Wazuh Dashboard serves as the primary visual interface for monitoring logs, alerts, and system performance metrics. Key
features of the dashboard include:

a. Overview: Provides a summary of agent status, alert counts based on severity levels, and active security modules.

b. Endpoint: Offers comprehensive information about agent connectivity status, operating system distribution, and endpoint
grouping.

c. Agent Details: Displays the evolution of security events, MITRE ATT & CK mapping, and Security Configuration Assessment

(SCA) results.

d. Threat Hunting: Enables granular analysis of security logs, including identifying attack patterns and correlating alerts.

The dashboard’s visualizations facilitate incident investigation, security audits, and prompt strategic decision-making. Figure 3
illustrates the Overview page of the Wazuh Dashboard, which serves as the central monitoring interface for managing overall system
security. This page provides a comprehensive summary of agent status, alert severity levels over the past 24 hours, and active security
modules within the system.

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer,
Vol. 25, No. 1, November 2025: 173 — 188

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer O 181

LAST 24 HOURS ALERTS

Critical severity High severity Medium severity Low severity

0 4,819 40,785

Rule level 15 or highe: Rule level 12 to 14 Rule level 7to 11 Rule level 0to 6

zzzzzzzzzzzzzz

@) Threat Hunti QD Vuinerabilty Detecti

Discover what appi
affected by well-kn

{O MITRE ATT&CK
Explo alerts mapped to adversary
niques for better threat

Figure 3. Wazuh dashboard page

In the Agent’s Summary section, the connection status between endpoints and the Wazuh Manager is visualized using colored
circles. Red circles indicate disconnected agents, while green circles represent active and well-connected agents. During testing,
the system detected one active agent and one disconnected agent. This information is crucial for administrators, as it helps identify
weaknesses in the monitoring network and ensures real-time connectivity across all system components.

On the upper right side of the dashboard interface, the “Last 24 Hours Alerts” section presents a quantitative overview of
security events, systematically categorized by rule severity levels to facilitate risk prioritization and operational awareness. This
visualization enables administrators to rapidly assess the threat landscape by identifying temporal patterns and the relative criticality
of recent incidents, thereby supporting informed decision-making. The severity classification, which spans from low to critical, is
not merely a metric of frequency but a strategic tool that aligns response efforts with the potential impact of detected anomalies,
ensuring that human and technical resources are allocated efficiently based on the urgency and gravity of each alert. Here is a detailed
explanation of each severity level:

a. Critical Severity (rule level > 15): Alerts at this level indicate serious threats that could compromise system integrity or result
in significant data loss. High-scale attacks like these require immediate action from administrators to prevent further damage.

b. High Severity (rule level 12—14): This level reflects significant threats to system integrity and confidentiality, such as unautho-
rized access attempts or dangerous malware activities. Although not critical, these alerts still require prompt attention due to
their substantial risk.

c. Medium Severity (rule level 7-11): Alerts at this level signify suspicious activity, such as repeated failed logins, unauthorized
configuration changes, or access to sensitive files. While not direct threats, these alerts provide early signals for administrators
to conduct further investigations.

d. Low Severity (rule level 0-6): This category includes basic information or routine activities commonly observed in system
operations, such as service startups, log modifications, or terminal command usage. Although non-threatening, this data
remains essential for security audits as it offers insights into normal system behavior.

The segmentation of alert severity levels helps administrators prioritize mitigation actions based on the risks they face. With a
clear understanding of alert distribution by severity, security teams can respond to incidents effectively using a risk-based approach.
Additionally, the dashboard provides quick access to other security modules, such as Configuration Assessment, Malware Detection,
Threat Hunting, Vulnerability Detection, and File Integrity Monitoring, enabling deeper analysis of detected threats.

To enhance threat detection capabilities in response to simulated attacks, custom rules were manually added to the local _rules.xml
file located in /var/ossec/etc/rules/, which serves as a repository for user-defined rules not included in Wazuh’s default configuration.
This approach enables the system to recognize specific attack patterns, such as Brute Force and Distributed Denial of Service (DDoS),
derived from both system logs and external Intrusion Detection System (IDS) outputs, such as Suricata.

For instance, a custom rule with ID 100001 was implemented to detect SSH-based Brute Force attacks by monitoring repeated
authentication failures in system logs. As shown in Figure 4, this rule references the default Wazuh rule 5716 (which detects SSH login
failures) using if_sid=5716, and applies an IP filter (srcip) to target suspicious source addresses, such as 1.1.1.1. The rule is assigned
a severity level of 5, indicating a medium-risk threat that is sufficient to trigger alerts without generating excessive false positives.
It is also categorized under authentication_failed and PCI-DSS compliance tags (pci_dss_10.2.4, pci_dss_10.2.5), demonstrating its
dual role in technical mitigation and regulatory adherence. This configuration allows the system to effectively identify repetitive
failed login attempts from a single IP address, a hallmark of Brute-Force attacks, particularly critical in publicly accessible server
environments.

Cyber Threat Detection . . . (Yuri Ariyanto)

182 O3 ISSN: 2476-9843

Figure 4. Rule for brute force detection of SSH

Figure 4 shows the XML configuration snippet for a custom Wazuh rule designed to detect SSH Brute-Force attacks. The rule
leverages if_sid=5716 to reference the default authentication failure detection, filters by source IP (srcip=1.1.1.1), sets a severity level
of 5, and includes descriptive metadata and compliance groupings for enhanced visibility and auditability.

Similarly, DDoS detection was strengthened by adding new rules, as illustrated in Figure 5. Rule 100100 monitors kernel
logs for entries containing "DDoS flood attempt” and assigns a high severity level (10) to indicate a critical threat, suitable for
detecting attacks using tools like hping3. Rule 100111 serves as a suppression rule to filter out redundant IDS alerts generated by
Suricata, reducing noise and ensuring that only significant events are processed. Finally, rule 100200 triggers when Suricata detects
an ”Attempted-Dos” event and routes the alert to the telegram_alert group, enabling real-time notification via Telegram API. This
multi-layered approach—combining kernel-level log analysis with external IDS integration significantly improves detection accuracy
and ensures rapid response, thereby minimizing the Mean Time to Respond (MTTR).

S attack detected.

s repeated 'First time this IDS alert!®

attempt detected (Filtered for Telegram).
ricata

Figure 5. Detection of distributed denial of service (DDoS) attacks

Figure 5 presents the XML configuration for three complementary rules to detect DDoS attacks. The first rule targets kernel-
level flood attempts, the second suppresses redundant IDS alerts, and the third integrates Suricata’s findings with Telegram notifica-
tions, forming a robust, end-to-end DDoS detection and response pipeline.

A comprehensive evaluation of the implemented cybersecurity system’s effectiveness in automatically detecting and responding
to cyber threats. The assessment focused on two key dimensions: (1) the system’s ability to detect prevalent attack types, specifically
SSH-based brute Force and application-layer DDoS attacks, and (2) the efficiency of real-time alerting via the Telegram API and
security monitoring through the Wazuh dashboard. A mixed-methods evaluation approach was adopted, combining quantitative
performance metrics with qualitative analysis of alert accuracy, usability, and system integration.

Security incidents were continuously monitored through logs, visual analytics, and alerts presented on the Wazuh dashboard,
and independently verified through real-time notifications delivered to administrators via Telegram. Detection accuracy was assessed
based on the system’s rule-based logic, severity classification (ranging from 1 to 15), and the precision of the machine learning-
powered attack classification module. This holistic evaluation ensured that the system was not only technically functional but also
operationally effective, with strong responsiveness, visibility, and ease of monitoring critical requirements for modern cybersecurity
solutions.

A critical component of the evaluation was the real-time notification mechanism via Telegram API. To ensure rapid response
in modern security environments, the system incorporated an automated alerting process. This integration was implemented through
three core components: the custom-telegram shell wrapper script, as shown in Figure 6.

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer,
Vol. 25, No. 1, November 2025: 173 — 188

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer 0O 183

$SCRIPT_NAME™

Figure 6. Shell wrapper script

The Python script, named custom-telegram.py as shown in Figure 7, serves as the core component for integrating Wazuh with
the Telegram API, enabling automated real-time alert dissemination to security administrators. As depicted in Figure 7, the script
processes JSON-formatted alert data generated by Wazuh, extracts critical fields such as severity level, description, and source agent,
and constructs a structured message payload for transmission. This integration is further enabled by configuration settings within the
ossec.conf file as shown in Figure §, which defines the integration parameters, including the minimum alert severity threshold (set at
level 10) and the destination webhook URL for the Telegram bot, ensuring that only high-priority incidents trigger notifications. The
seamless integration between the script and the configuration file ensures reliable, low-latency alert delivery, thereby enhancing the
system’s operational responsiveness and situational awareness.

custom-telegram

I i.telegram.or

Figure 8. Configuration in ossec.conf

The shell wrapper ensures consistent execution of the Python script across different directory contexts, using Wazuh’s internal
Python interpreter. The custom-telegram.py script, located in /var/ossec/integrations, processes JSON-formatted Wazuh alerts and
sends them to Telegram via HTTP POST using predefined bot tokens and chat IDs. It includes error handling and logging for
reliability and traceability. The ossec.conf configuration defines the integration parameters, including the name (custom-telegram),
the minimum severity threshold (level 10), and the data format (JSON), ensuring notifications are triggered only by significant threats.
This mechanism enables real-time delivery of crucial information, including attack type, source IP, and timestamp, to administrators
without relying on manual dashboard monitoring, thereby proving the end-to-end efficacy of the detection and alerting pipeline and
enhancing overall incident response efficiency.

Cyber Threat Detection . . . (Yuri Ariyanto)

184 O3 ISSN: 2476-9843

Brute-force attack simulations were conducted targeting the SSH service, a widely exploited vector in network security due
to its prevalence in remote administration and its potential for credential-based compromise. The testing methodology employed the
open-source tool THC Hydra, which was configured to execute systematic login attempts against the target server using username and
password combinations sourced from a predefined wordlist, as illustrated in Figure 9. This approach effectively simulated real-world
credential-guessing attacks, enabling the evaluation of the system’s detection capabilities under conditions that replicate common
malicious behavior patterns observed in cybersecurity incidents.

Figure 9. Open-source tool THC Hydra

Figure 9 displays the terminal output from a THC Hydra command used to perform a brute-force attack on an SSH ser-
vice, illustrating the tool’s systematic approach to credential enumeration. The command hydra -L username.txt -P password.txt
ssh://[TARGET_IP] instructs Hydra to iteratively test every combination of usernames from the username.txt file and passwords from
the password.txt file against the specified target server, thereby simulating a real-world credential-guessing attack. This methodology
enables evaluation of the system’s resilience to automated login attempts, in which repeated authentication failures are logged and
analyzed by the security monitoring infrastructure for pattern recognition and threat detection.

The execution results confirmed Hydra’s ability to identify valid credentials, demonstrating the target system’s vulnerability
to SSH-based Brute-Force attacks under simulated conditions. The repeated login attempts generated by Hydra were systematically
logged by the Wazuh Agent deployed on the target endpoint and forwarded to the Wazuh Manager for centralized analysis. The
Wazuh Manager processed these logs using custom detection rules to identify suspicious patterns, such as a high frequency of failed
authentication attempts originating from the same source IP address, which is a hallmark of automated credential-guessing attacks.
As illustrated in Figure 10, the dashboard visualized this surge in activity through a time-series bar graph, highlighting a significant
spike in alert volume during the attack window, thereby validating the system’s capability to detect anomalous behavior in real time.
This detection mechanism enabled automated response actions, including IP blocking via Fail2Ban and the immediate delivery of
notifications to administrators via the Telegram API, ensuring a coordinated, timely defense posture.

QL,,E,,,,:,,JgJLL,L,,_,

16,981 its ©
T, 2025 @ 205443778 - Jul 2, 2025 @ 20:54:43778

= Colmns = Density + 1fieds sorted (5 Fullscreen

rlelevel < ruleid

10 2502
s710

0 2502
s710
5710
s710

10 sn2
s710
s710
s710
5710
s710
ss03
ss03

10 2502

12345 . 67>

Figure 10. Wazuh manager to detect suspicious patterns

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer,
Vol. 25, No. 1, November 2025: 173 — 188

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer O 185

Figure 10 shows the Wazuh dashboard monitoring a brute-force attack on the SSH service of an agent named Agent_0O1. The
bar graph at the top shows the distribution of alerts over time, with a significant spike indicating a surge in login attempts. The table
below lists detailed alerts, including descriptions such as ”’sshd: Attempt to login using a non-existent user,” ”syslog: User missed the
password more than one time,” and “’sshd: brute force trying to get access to the system.” Each entry includes metadata such as the
timestamp, agent name, rule description, severity level (rule.level), and rule ID (rule.id). An alert with rule.level = 10 indicates that
Wazuh successfully identified the suspicious login activity as a high-severity brute force attack.

These findings confirm Wazuh’s capability to monitor and detect cyber threats in real time, as evidenced by its prompt iden-
tification of anomalous login patterns during the simulated Brute Force attack. The detection mechanism triggers an automated
notification process through the integrated Telegram API, ensuring that security administrators receive critical alerts without delay.
As illustrated in Figure 11, the notifications are delivered in a structured JSON format, containing essential details such as the incident
description, severity level, and source agent, which enables rapid assessment and swift response to potential security breaches. This
seamless integration between detection and alerting enhances overall situational awareness and significantly reduces the Mean Time
to Respond (MTTR) in operational environments.

{"description”: "PAM: Multiple failed logins in a small period of time.”,
“alert_level™: "10", "agent": "Agent_01"}

{"description”: "PAM: Multiple failed logins in a small period of time.”,
“alert_level™ "10", "agent": "Agent_01"}

{"description": "sshd: brute force trying to get access to the system.
Authentication failed.”, "alert_level": "10", "agent": "Agent_01"}

{"description™: "PAM: Multiple failed logins in a small period of time.”,
“alert_level™: 10", "agent": "Agent_01"}

{"description": "sshd: brute force trying to get access to the system.
Non existent user.", "alert_level": 10", "agent™: "Agent_01"}

{"description": "PAM: Multiple failed logins in a small period of time.”, |
“alert_level™: 10", "agent": "Agent_01"}
{"description": "PAM: Multiple failed logins in a small period of time.”,

| “alert_level: 10", "agent": "Agent_01"}

{"description": "sshd: brute force trying to get access to the system.
Authentication failed.”, "alert_level": "10", "agent™: "Agent_01"}

{"description": "sshd: brute force trying to get access to the system.
Non existent user.”, “alert_level": "10", "agent™: "Agent_01"}
b

Figure 11. Brute Force Notification from Telegram

Figure 11 demonstrates the seamless integration between the Wazuh-based intrusion detection system and the Telegram notifi-
cation service, establishing a robust alerting mechanism that operates without human intervention. Suspicious activities, particularly
SSH brute force indicators such as repeated failed login attempts, are automatically relayed to designated administrators in struc-
tured JSON format. Each alert encapsulates critical contextual information, including a descriptive incident message (e.g., PAM:
Multiple failed logins in a short period of time), a severity level (level 10, which signifies a high-risk event), and the originating
agent identifier (Agent_01). This real-time delivery eliminates the need for continuous dashboard monitoring. It ensures that security
personnel receive actionable intelligence promptly, thereby validating the end-to-end efficacy of the detection-to-notification pipeline
and significantly improving incident response readiness.

To substantiate these operational advantages with empirical evidence, a series of controlled simulations was conducted under
standardized conditions to evaluate the system’s performance against SSH-based Brute Force and application-layer DDoS attacks
using THC Hydra and slowhttptest, respectively. Quantitative metrics, including MTTD, MTTR, detection accuracy, and false
positive rate (FPR), were rigorously measured and compared against a baseline configuration using only default Wazuh rules. The
integrated system achieved an MTTD of 4.7 seconds for Brute Force attacks and 7.3 seconds for DDoS attacks, substantially faster
than the baseline figures of 21.3 and 34.6 seconds, while maintaining an MTTR of 8.2 seconds and under 10 seconds, respectively.
With an overall detection accuracy of 98.4% and an FPR of merely 1.5% across 100 test iterations, these results confirm that the
synergistic combination of custom Wazuh rules, Fail2Ban automation, and Telegram.

Cyber Threat Detection . . . (Yuri Ariyanto)

186 O3 ISSN: 2476-9843

The empirical results presented in Table 4 unequivocally demonstrate that the proposed integrated system comprising Wazuh,
Fail2Ban, and custom detection rules significantly outperforms a baseline Wazuh deployment using only its default rules across
all critical performance metrics for both Brute Force and DDoS attack scenarios. For Brute Force attacks, the proposed system
achieved an MTTD of 4.7 seconds and an MTTR of 8.2 seconds, representing a substantial reduction from the baseline’s 21.3-second
MTTD and lack of automated response; concurrently, it improved detection accuracy from 87.6% to 98.0% while slashing the false
positive rate (FPR) from 8.2% to 1.0%. Similarly, for DDoS attacks, the system reduced MTTD from 34.6 seconds to 7.3 seconds.
It maintained an MTTR under 10 seconds, while elevating detection accuracy to 98.8% and reducing FPR to 1.8%, compared to
the baseline’s 85.4% accuracy and 10.5% FPR. Crucially, the integration with the Telegram API enabled alert delivery within 3
seconds, contrasting sharply with the baseline’s reliance on manual dashboard monitoring, thereby validating the system’s efficacy in
delivering rapid, precise, and actionable threat intelligence in resource-constrained environments.

Table 4. Performance Metrics of the Automated Threat Detection and Response System

Attack Type Configuration MTTD MTTR Detection Accuracy FPR Alert Delivery
Brute Force Proposed System (Wazuh + Fail2Ban + Custom Rules) 4.7 s 8.2s 98.0% 1.0% Telegram (< 3 s)
Brute Force Baseline (Wazuh Default Rules Only) 21.3s N/A 87.6% 8.2% Dashboard Only

DDoS Proposed System (Wazuh + Fail2Ban + Custom Rules) 73s i10s 98.8% 1.8% Telegram (< 3 s)
DDoS Baseline (Wazuh Default Rules Only) 34.6s N/A 85.4% 10.5% Dashboard Only

4. CONCLUSION

This study successfully demonstrates the implementation of an automated cyber threat detection and response system using the
open-source SIEM platform Wazuh, integrated with Fail2Ban for automatic IP blocking and Telegram API for real-time notifications.
By adopting the PPDIOO (Prepare, Plan, Design, Implement, Operate, Optimize) methodology, the development process was struc-
tured and systematic, ensuring alignment with industry best practices. The integrated system effectively detected and responded to
common cyberattacks, particularly SSH-based Brute Force and DDoS attacks, with high accuracy and minimal latency. Performance
metrics such as Mean Time to Detect (MTTD) and Mean Time to Respond (MTTR) were significantly reduced, enabling rapid
threat mitigation. Furthermore, the real-time alerting mechanism via Telegram enhanced incident response efficiency by ensuring
immediate notification to administrators. This research advances cost-effective, scalable, and modular cybersecurity solutions based
on open-source technologies, demonstrating their viability for deployment in small- to medium-sized network infrastructures. The
findings underscore the potential of integrating open-source tools into a cohesive security pipeline, thereby improving the overall
effectiveness and responsiveness of cyber threat management.

S. ACKNOWLEDGEMENTS

The authors would like to express their sincere gratitude to the Ministry of Higher Education, Science, and Technology of the
Republic of Indonesia, Politeknik Negeri Malang, and the Research and Community Service Center of Politeknik Negeri Malang for
their financial support and provision of laboratory facilities. Special thanks are also extended to the Applied Informatics Laboratory
of Politeknik Negeri Malang for the technical infrastructure and academic support throughout the research process. This study would
not have been possible without their valuable contributions.

6. DECLARATIONS

AUTHOR CONTIBUTION
Yuri Ariyanto was responsible for the Conceptualization and Methodology of the study, led the system architecture design, and
prepared the original draft of the manuscript. Ali Ridho Muladawila and M. Hasyim Ratsanjani contributed to the implementation
of the system and performed data analysis. Triana Fatmawati and Yan Watequlis Syaifudin led the discussion of the results and
contributed to technical validation. Pramana Yoga Saputra and Chandrasena Setiadi provided critical review and intellectual input
during the manuscript revision process. All authors participated in supervising the research and have approved the final version of
the manuscript, ensuring its accuracy, integrity, and scholarly quality.

FUNDING STATEMENT
The Ministry of Higher Education, Science, and Technology of the Republic of Indonesia funded this research. The authors also

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer,
Vol. 25, No. 1, November 2025: 173 — 188

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer O 187

gratefully acknowledge the support from Politeknik Negeri Malang and Lab Applied Informatics, which provided institutional re-
sources and facilities that contributed to the success of this study.

COMPETING INTEREST
According to the authors, there are no conflicts of interest.

REFERENCES

[1] N. Sun, M. Ding, J. Jiang, W. Xu, X. Mo, Y. Tai, and J. Zhang, “Cyber Threat Intelligence Mining for Proactive Cybersecurity
Defense: A Survey and New Perspectives,” vol. 25, no. 3, pp. 1748-1774, 2023, https://doi.org/10.1109/COMST.2023.3273282.

[2] Y. Ariyanto, “Single server-side and multiple virtual server-side architectures: Performance analysis on Proxmox VE for e-
learning systems,” vol. 9, no. 44, 2023, https://doi.org/10.5935/jetia.v9i44.903.

[3] M. Tahmasebi, “Cyberattack Ramifications, The Hidden Cost of a Security Breach,” vol. 15, no. 02, pp. 87-105, 2024, https:
//doi.org/10.4236/jis.2024.152007.

[4] S. Stankovic, S. Gajin, and R. Petrovic, “A review of Wazuh tool capabilities for detecting attacks based on log analysis,”
vol. 1, 2022.

[S] A.Purwanto and B. Soewito, “Optimization problem of computer network using ppdioo,” vol. 15, no. 7, pp. 769-777, 2021.

[6] A. Tariq, J. Manzoor, M. A. Aziz, Z. U. A. Tariq, and A. Masood, “Open source SIEM solutions for an enterprise,” vol. 31,
no. 1, pp. 88—107, February,2023, https://doi.org/10.1108/ICS-09-2021-0146.

[7] J.Manzoor, A. Waleed, A. F. Jamali, and A. Masood, “Cybersecurity on a budget: Evaluating security and performance of open-
source SIEM solutions for SMEs,” vol. 19, no. 3, p. €0301183, March,2024, https://doi.org/10.1371/journal.pone.0301183.

[8] Gonzalez Perez. (2023) Information Security Event Management (SIEM) Systems and Al for Enhancing Policy Deployment
Effectiveness in Intrusion Detection. https://doi.org/10.13140/RG.2.2.16106.94405.

[9] A. Tely, A. Aryanti, and S. Soim, “Sharing SSH Threat Intelligence across Multiple Servers using WebSocket and Fail2Ban,”
vol. 10, no. 2, pp. 221-229, July,2025, https://doi.org/10.24235/itej.v10i2.270.

[10] C. Headland, “Mitigating cyber espionage: A network security strategy using notifications,” 2024.

[11] A. S. Elrashdi, S. K. Alferjani, R. R. Omar, and F. M. Hasan, “The efficiency of using PPDIOO Methodology to Design
Graduation Projects for Network Department Students,” in 2024 IEEE 7th International Conference on Advanced Technologies,
Signal and Image Processing (ATSIP), vol. 1, July,2024, pp. 438—442, https://doi.org/10.1109/ATSIP62566.2024.10638951.

[12] R. George and E. Z. Abay, “Detection of SSH Brute-Force Attacks Using Machine Learning: A Comparative Study with
Fail2Ban and PAM Tally2,” 2025.

[13] D. F. Priambodo, A. H. N. Faizi, F. D. Rahmawati, S. U. Sunaringtyas, J. Sidabutar, and T. Yulita, “Collaborative Intrusion
Detection System with Snort Machine Learning Plugin,” vol. 8, no. 3, pp. 1230-1238, September,2024, https://doi.org/10.
62527/j01v.8.3.2018.

[14] A. Shankar and V. Madisetti, “A Framework for Cybersecurity Alert Distribution and Response Network (ADRIAN),” vol. 17,
no. 05, pp. 396-420, 2024, https://doi.org/10.4236/jsea.2024.175022.

[15] X. Fu, S. Lou, J. Zheng, C. Chi, J. Yang, D. Wang, C. Zhu, B. Huang, and X. Zhu, “Deep learning techniques for DDoS attack
detection: Concepts, analyses, challenges, and future directions,” vol. 291, p. 128469, October,2025, https://doi.org/10.1016/j.
eswa.2025.128469.

[16] J. S. Suroso and C. P. Prastya, “Cyber Security System With SIEM And Honeypot In Higher Education,” vol. 8§74, no. 1, p.
012008, June,2020, https://doi.org/10.1088/1757-899X/874/1/012008.

Cyber Threat Detection . . . (Yuri Ariyanto)

https://doi.org/10.1109/COMST.2023.3273282
https://doi.org/10.5935/jetia.v9i44.903
https://doi.org/10.4236/jis.2024.152007
https://doi.org/10.4236/jis.2024.152007
https://doi.org/10.1108/ICS-09-2021-0146
https://doi.org/10.1371/journal.pone.0301183
https://doi.org/10.13140/RG.2.2.16106.94405
https://doi.org/10.24235/itej.v10i2.270
https://doi.org/10.1109/ATSIP62566.2024.10638951
https://doi.org/10.62527/joiv.8.3.2018
https://doi.org/10.62527/joiv.8.3.2018
https://doi.org/10.4236/jsea.2024.175022
https://doi.org/10.1016/j.eswa.2025.128469
https://doi.org/10.1016/j.eswa.2025.128469
https://doi.org/10.1088/1757-899X/874/1/012008

188 O3 ISSN: 2476-9843

[17] F. L F. Farrel, I. Mardianto, and A. S. Qamar, “Implementation of Security Information and Event Management (SIEM) Wazuh
with Active Response and Telegram Notification for Mitigating Brute Force Attacks on The GT-I2TI USAKTI Information
System,” vol. 4, no. 1, pp. 1-7, February,2024, https://doi.org/10.25105/itm.v4i1.18529.

[18] R. Amami, M. Charfeddine, and S. Masmoudi, “Exploration of Open Source SIEM Tools and Deployment of an Appropriate
Wazuh-Based Solution for Strengthening Cyberdefense,” in 2024 10th International Conference on Control, Decision and
Information Technologies (CoDIT), July,2024, pp. 1-7.

[19] Y. Ariyanto, B. Harijanto, A. N. Asri, A. Y. H. Permana, M. N. Ismail, and S. N. Arief, “Performance Analysis of
Mobile Learning Systems on Cloud Computing Using Load Testing Methods,” in Proceedings of the 2022 Annual Tech-
nology, Applied Science and Engineering Conference (ATASEC 2022), R. A. Asmara, A. R. Syulistyo, V. N. Wijayan-
ingrum, M. S. Khairy, I. Siradjuddin, and S. E. Sukmana, Eds. Atlantis Press International BV, 2022, pp. 125-133,
https://doi.org/10.2991/978-94-6463-106-7_12.

[20] J. M. Lopez Velasquez, S. M. Martinez Monterrubio, L. E. Sanchez Crespo, and D. Garcia Rosado, “Systematic review of SIEM
technology: SIEM-SC birth,” vol. 22, no. 3, pp. 691-711, June,2023, https://doi.org/10.1007/s10207-022-00657-9.

[21] B. D. Bryant and H. Saiedian, “Improving SIEM alert metadata aggregation with a novel kill-chain based classification model,”
vol. 94, p. 101817, July,2020, https://doi.org/10.1016/j.cose.2020.101817.

[22] S. Eswaran, A. Srinivasan, and P. Honnavalli, “A threshold-based, real-time analysis in early detection of endpoint anomalies
using SIEM expertise,” vol. 2021, no. 4, pp. 7-16, April,2021, https://doi.org/10.1016/S1353-4858(21)00039-8.

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer,
Vol. 25, No. 1, November 2025: 173 — 188

https://doi.org/10.25105/itm.v4i1.18529
https://doi.org/10.2991/978-94-6463-106-7_12
https://doi.org/10.1007/s10207-022-00657-9
https://doi.org/10.1016/j.cose.2020.101817
https://doi.org/10.1016/S1353-4858(21)00039-8

	INTRODUCTION
	RESEARCH METHOD
	Prepare
	Plan
	Design
	Implement
	Operate
	Optimize

	RESULT AND ANALYSIS
	CONCLUSION
	ACKNOWLEDGEMENTS
	DECLARATIONS

