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The growing number of Internet of Things devices has led to an increased risk of cyberattacks. A chal-
lenge is the imbalanced class distribution in Internet of Things datasets, which can cause classification
algorithms to be biased towards the majority class and hinder effective threat detection. This study
addresses this issue by leveraging the Random Forest algorithm optimized by the Synthetic Minority
Oversampling Technique (SMOTE). The research aims to develop an effective model for detecting
cyberattacks in Internet of Things (IoT) environments by addressing class imbalance within the CIC-
10T2023 dataset. The methodology involves data preprocessing and the application of SMOTE for
data balancing. The balanced dataset was used to train a Random Forest model, and its performance
was evaluated utilizing accuracy, precision, recall, F1-score, and Cohen’s Kappa metrics. The results
demonstrate the model’s effectiveness, achieving an accuracy of 99.01%, an F1-score of 98.96%, and
a Cohen’s Kappa of 98.92%. This marks a performance improvement, particularly in detecting minor-
ity classes, compared to the model trained without SMOTE, which struggled to identify less common
attack types. The outcomes suggest that combining Random Forest with SMOTE can significantly
enhance intrusion detection systems by improving detection accuracy for all 33 attack types and re-
ducing the risks associated with undetected threats. In conclusion, this study advances Internet of
Things cybersecurity by presenting a method for addressing data imbalance in attack detection and
calls for further evaluation of the model’s robustness on more complex datasets and its performance in
real-time deployment on resource-constrained Internet of Things devices.
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1. INTRODUCTION

The rise of the Internet of Things (IoT) has led to a significant transformation in global automation and communication systems.
By connecting billions of smart devices across sectors such as healthcare, manufacturing, transportation, and smart homes, IoT
is reshaping how data is generated, shared, and utilized [1]. However, this rapid expansion also introduces significant security
vulnerabilities. A wide variety of devices characterizes IoT technology, many of which have limited computing power, memory, and
energy, making them particularly susceptible to a range of cyberattacks [2]. These limited resources often impede the deployment of
conventional security systems, leaving IoT devices increasingly vulnerable to cyberattacks. According to a recent report by Kaspersky
2023 [3], there has been a more than 40% increase in attacks targeting IoT devices over the past two years. These outcomes are
consistent with academic analyses that highlight a growing surge in cyber threats within the IoT ecosystem, comprising Distributed
Denial of Service (DDoS) attacks and malware [4, 5]. This highlights the urgent need to strengthen IoT security to safeguard data
and ensure system reliability. Machine learning (ML)-based intrusion detection systems have emerged as an effective solution for
identifying suspicious activities inside IoT network traffic [6]. Among the widely used algorithms, Random Forest (RF) stands out for
its ability to manage high-dimensional datasets, resist overfitting, and deliver consistently accurate results, making it a robust tool for
data analysis [7]. However, a significant challenge in cybersecurity is the issue of imbalanced label distribution [8]. This imbalance
often results in minority classes, such as SQL Injection or Command Injection attacks, being overlooked due to the dominance of
more frequent classes like DDoS attacks. Consequently, the detection of high-risk threats becomes less effective [9].

To mitigate this problem, preprocessing techniques such as the Synthetic Minority Oversampling Technique (SMOTE) have
been widely applied. SMOTE generates synthetic samples for minority classes, thereby improving model sensitivity toward rare
yet critical attacks. Several studies have reported its effectiveness in IDS contexts [10—-14], showing improved performance across
classifiers such as Support Vector Machines, Neural Networks, and Random Forest. Other approaches, including hybrid sampling
[15], adaptive resampling [16], and ensemble learning [17], also demonstrated promising improvements. Nevertheless, most of these
works were conducted on older datasets such as NSL-KDD or CICIDS2017, with limited application to more recent and complex
IoT traffic.

CIC-I0T2023 is the latest publicly available dataset, specifically designed to illustrate IoT traffic patterns and various real-
world attack scenarios [12]. The dataset comprises 33 attack classes, encompassing a wide range of threats, including DoS, DDoS,
reconnaissance, and web application attacks. However, the complexity and pronounced class imbalance within the CIC-10T2023
dataset present significant challenges in building effective intrusion detection system (IDS) models using machine learning tech-
niques. The difference between this research and previous research is that prior studies mainly focused on evaluating SMOTE or
other balancing methods on older datasets or simplified binary class detection. In contrast, this study explicitly investigates how data
imbalance affects the performance of Random Forest in a multi-class intrusion detection scenario using the CIC-IoT2023 dataset,
with a particular emphasis on detecting minority classes. The novelty of this research is the explicit combination of SMOTE and
Random Forest for multi-class IoT intrusion detection using CIC-10T2023, supported by a comprehensive comparative analysis of
classification metrics before and after balancing. This approach provides deeper insights into the trade-off between sensitivity and
precision, offering both methodological contributions and practical implications for IoT security.

Building on the context mentioned earlier, this study aims to assess the SMOTE technique in comparison to the performance of
the Random Forest algorithm in detecting cyberattacks on the CIC-10T2023 dataset. This research focuses on enhancing the model’s
ability to identify minority classes without compromising accuracy. The main contributions of this study include evaluating the
performance of SMOTE on a highly imbalanced IoT dataset and implementing and validating the SMOTE-Random Forest algorithm
in a multi-class detection scenario on the CIC-I0T2023 dataset. The study also compares classification performance metrics before
and after the balancing process to assess the impact on model sensitivity and precision. In contrast to prior studies that predominantly
emphasized overall accuracy or binary detection schemes, this research highlights the importance of class balance in multi-class
intrusion detection, where minority attacks are often underrepresented yet highly consequential. By addressing this gap, the study
advances methodological approaches while offering practical implications for building more reliable and equitable intrusion detection
systems in IoT environments.

2. RESEARCH METHOD

This study applies the Random Forest (RF) algorithm to detect cyberattacks in Internet of Things (IoT) environments, combined
with the Synthetic Minority Oversampling Technique (SMOTE) [10, 11] to address the class imbalance problem. The methodological
workflow was designed to ensure experimental validity and consists of six main stages. First, dataset collection and preprocessing
were conducted, including feature extraction and labeling to guarantee data quality and relevance [5]. Second, the dataset was
divided into training and testing subsets to enable an unbiased evaluation of model generalization [2]. Third, feature normalization
was performed to maintain scale uniformity and improve classifier performance by mitigating the influence of heterogeneous feature
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ranges [17]. Fourth, SMOTE was applied to generate synthetic samples of minority classes, thereby reducing bias toward majority
classes [8]. Fifth, the Random Forest classifier was implemented with optimized hyperparameters to enhance predictive accuracy
and robustness, leveraging its ensemble structure. Finally, model evaluation was conducted using confusion matrix-based metrics,
including accuracy, precision, recall, and F1-score, to provide a comprehensive view of both overall performance and minority class
detection. The workflow is illustrated in Figure 1, which presents a structured overview of the research methodology.

SMOTE

CICIoT 2023 Preprocessing Dataset

Dataset

RF Classifier

i

Result Analysis
(Accuracy, Precision, Recall, F1-
Score, and Cohen’s Kappa)

Figure 1. Conceptual view of the research methodology

2.1. Dataset

The dataset used in this study is CIC-IoT2023, developed by the Canadian Institute for Cybersecurity (CIC) as part of its
ongoing effort to provide high-quality, publicly available resources for network security research. Recognized as one of the most
recent and comprehensive benchmarks for evaluating IoT intrusion detection systems, it encompasses 33 distinct attack types span-
ning multiple threat categories, including Distributed Denial-of-Service (DDoS), Denial-of-Service (DoS), reconnaissance, malware,
and web application attacks [12, 17]. The dataset was generated through controlled experimental setups involving a diverse range of
10T devices such as IP cameras, routers, smart sensors, and other connected endpoints, thereby capturing realistic and heterogeneous
network traffic patterns. Each traffic instance is labeled according to its corresponding attack or benign category, ensuring precise
ground-truth references for supervised machine learning tasks. This combination of breadth in attack coverage, realism in traffic
generation, and precise labeling makes CIC-10T2023 a reliable and representative benchmark for assessing the performance and
generalization capabilities of intrusion detection models in real-world IoT environments. Importantly, these characteristics directly
support the aim of this study, which is to evaluate the effectiveness of SMOTE and Random Forest in handling class imbalance while
maintaining robust detection across diverse attack types.

2.2. Preprocessing Dataset

The data preprocessing phase is essential for converting raw inputs into a structured format suitable for machine learning
models [13, 15, 15]. This stage involves two key procedures: feature encoding for categorical variables and standardization for
numerical features [16]. Feature encoding ensures that categorical information is meaningfully represented in numerical form without
introducing bias, while standardization places numerical features on a comparable scale to prevent attributes with larger ranges from
dominating the learning process [15, 17].

2.2.1. Feature Encoding

Categorical features, such as flow duration, header length, and protocol type, are transformed into numerical representations
utilizing one-hot encoding [13, 16]. This encoding approach preserves the semantic integrity of each categorical variable while
avoiding the introduction of unintended ordinal relationships or biases that could mislead the learning process. In this method, each
category is converted into a binary vector where a single bit is set to one, and all others are set to zero, thereby enabling algorithms
such as Random Forest to process categorical data effectively without imposing any artificial hierarchy among feature values [16].
The use of one-hot encoding in this study ensures that the diversity of categorical attributes in the CIC-10T2023 dataset is represented
faithfully, which is crucial for maintaining the reliability and fairness of the intrusion detection model’s training and evaluation phases
[15]. Moreover, this procedure directly supports the study’s objective of building a balanced and unbiased detection system that can
generalize well across heterogeneous IoT traffic scenarios.

Optimizing Random Forest . . . (Guntoro Guntoro)
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2.2.2. Data Standardization

Given that the IDS dataset contains features with diverse value ranges and varying scales, data standardization was applied to
ensure consistency and comparability across all attributes [13, 15]. Standardization transforms the distribution of each feature from
its original scale to a standard normal distribution, thereby centering the data around zero and scaling it based on its variability. In
practical terms, this rescaling process ensures that each feature has a mean value of zero and a standard deviation of one, which is
particularly important for machine learning algorithms that are sensitive to differences in feature magnitude. This transformation was
performed using the standard score (z-score) method, in Equation 1.

(x —p) 0

where = denotes the observed sample value, 4 is the mean of the feature, and ¢ is its standard deviation. This standardization
centers each feature at zero and scales it to unit variance, which prevents variables with larger numerical ranges from dominating the
learning process. As a result, optimization becomes more stable and the overall robustness of the intrusion detection model improves
[18].

2.3. Imbalancing Data

The CIC-10T2023 dataset exhibits a significant class imbalance, with the majority of samples concentrated in dominant attack
types such as DDoS-ICMP_Flood and DDoS-UDP_Flood. To mitigate this issue, the Synthetic Minority Over-sampling Technique
(SMOTE) is utilized, with the k_neighbors parameter set to 2 [10]. This configuration was chosen because preliminary experiments
indicated that a smaller neighborhood yields more realistic synthetic instances for highly sparse minority classes. At the same time,
larger k values tended to generate less representative samples. This aligns with prior studies that recommend lower k settings when
dealing with extreme imbalance, as it reduces the risk of producing noisy or overlapping samples [11]. Importantly, SMOTE is
applied exclusively to the training data to avoid information leakage into the testing set, thereby preserving the integrity of the model
evaluation.

2.4. Classification

The classification model employed in this study is Random Forest (RF), an ensemble learning algorithm that constructs multiple
decision trees utilizing different data subsets. The final prediction is determined through a majority voting mechanism, enhancing
both accuracy and robustness [14]. Random Forest was selected for its strong capability to process large-scale datasets and its
robustness against noisy data. In this study, the RF classifier was configured with key hyperparameters, including 100 decision trees
(n_estimators = 100), a maximum tree depth of 10 (max_depth = 10), and the square-root rule for the number of features considered
at each split (max_features = sqrt). These parameter settings were chosen based on preliminary experiments to achieve a balance
between predictive performance and computational efficiency, while also preventing overfitting.

2.5. Evaluation

The performance of the proposed model was assessed using a confusion matrix, which provides a detailed summary of the
classification outcomes based on four key components: True Positive (TP), True Negative (TN), False Positive (FP), and False
Negative (FN). These elements serve as the basis for calculating several important evaluation metrics, comprising. Equation 2 is used
to compute the accuracy metric, which serves as a fundamental performance indicator for evaluating the effectiveness of the intrusion
detection model. Accuracy is defined as the ratio of correctly predicted instances, including both attack and normal classes, to the
total number of samples in the dataset. This metric reflects the overall proportion of correct classifications made by the model and is
expressed mathematically as.

Accuracy = TP+ TN 2)
Y“TPITN+FP+FN

Equation 3 is used to calculate the precision metric, which measures the proportion of correctly predicted attack cases relative
to the total number of instances classified as attacks by the model. Precision focuses on the quality of positive predictions, indicating
how many of the instances labeled as attacks are indeed true attacks. It is mathematically expressed as.

TP
Presion — ——~
resion TP+ FP 3)
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Equation 4 is used to calculate the detection rate (also referred to as recall or true positive rate), which reflects the proportion
of correctly identified attack cases relative to the actual number of attack instances present in the dataset. This metric assesses the
model’s ability to identify malicious activities without overlooking genuine threats. It is mathematically expressed as.

TP
— 4
Recall = P N ( )

The F-Score (also referred to as the F1-Score) measures the harmonic mean between the detection rate (also known as recall)
and precision, thereby providing a single value that balances the trade-off between correctly identifying attacks and minimizing
false alarms. This metric is particularly useful when the class distribution is imbalanced, as it penalizes extreme disparities between
precision and recall. The F1-Score is calculated using Equation 5.

Precision x Recall
F1-8 =2 5
core x Precision + Recal )

Equation 6 is used to assess the level of agreement between two raters while accounting for the possibility that some degree of
agreement may occur purely by chance. This metric is commonly measured using Cohen’s Kappa coefficient, which provides a more
robust evaluation of inter-rater reliability compared to simple percentage agreement. Cohen’s Kappa is mathematically expressed as.

p,— P,
h=-—2——¢ 6
1P, (©)

3.  RESULT AND ANALYSIS

This section presents the experimental results and analysis of applying the Random Forest algorithm to the CIC-IoT 2023
dataset. The evaluation was carried out under two distinct scenarios: with and without the application of the Synthetic Minority
Oversampling Technique (SMOTE) for data balancing. The objective of this evaluation was to assess the model’s effectiveness in
detecting various types of cyberattacks inside an Internet of Things (IoT) environment, under both imbalanced and balanced data
conditions. Model performance was evaluated using multiple metrics, including accuracy, precision, recall, F1 Score, and Cohen’s
kappa. To gain deeper insights, a confusion matrix and detailed per-class performance reports are also given, offering a clearer
understanding of the model’s behavior across different attack categories. The test results are systematically organized to highlight the
impact of data balancing on classification performance and are further compared with outcomes from previous research.

3.1. Experimental Setup

All experiments were conducted utilizing Google Colab Pro, a cloud-based platform that offers access to high-performance
virtual machines. The experiments were implemented in Python 3.10, utilizing a range of essential libraries: Scikit-learn 1.3.2 for ma-
chine learning tasks, Imbalanced-learn for handling data imbalance through oversampling, Pandas and NumPy for data manipulation,
and Matplotlib along with Seaborn for data visualization.

3.2. Experimental Results

The proposed approach, which combines the SMOTE oversampling technique with the Random Forest algorithm, was thor-
oughly evaluated using the CIC-IoT2023 dataset. The assessment employed key performance metrics, comprising accuracy, pre-
cision, recall, and Fl-score, based on a 70:30 train-test split. As shown in Table 1, the results demonstrate a remarkably high
classification performance. Table 1 presents the performance evaluation of the Random Forest model after applying SMOTE for data
balancing. The model achieved an outstanding accuracy of 99.01%, reflecting a very high level of classification effectiveness. Fur-
thermore, the precision and recall scores of 98.98% and 99.01%, respectively, demonstrate the model’s strong capability to accurately
detect attacks while minimizing both false positives and false negatives effectively. An Fl-score of 98.96% further underscores the
model’s excellent balance among precision and recall, reinforcing its reliability in detecting real-world threats that demand high sen-
sitivity. This impressive level of accuracy gives strong assurance of the model’s effectiveness and robustness in practical applications.

Optimizing Random Forest . . . (Guntoro Guntoro)
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Table 1. The Experimental Results

Metrics Results (%)
Accuracy 99.01
Precision 98.98
Recall 99.01
Fl-score 98.96
Cohen’s Kappa 98.92

Moreover, the Cohen’s Kappa score of 98.92% indicates a strong agreement among the model’s predictions and the actual
class labels, even after accounting for chance agreement. These results clearly demonstrate that integrating SMOTE with the Random
Forest algorithm is highly effective in improving detection accuracy and mitigating the impact of class imbalance within the CIC-
10T2023 dataset. Consequently, this model can be considered a robust and reliable tool for detecting loT-based cyberattacks, offering
a high degree of confidence in its practical effectiveness.

3.3. The Impact of SMOTE on Class Imbalance

The label distribution in the CIC-IoT 2023 dataset reveals a pronounced class imbalance. Before the application of SMOTE
(Synthetic Minority Oversampling Technique), a few classes were heavily overrepresented, most notably DDoS-UDP_Flood by
22,048 samples, DDoS-TCP_Flood by 18,553 samples, and DoS-TCP_Flood by 10,976 samples. In contrast, many of the remaining
classes contained only a few hundred or even just a single sample. For instance, SQL Injection had 24 samples, XSS had 12 samples,
Uploading Attack had six samples, and Recon-Ping Sweep had only five samples. This severe imbalance can lead to bias in the
classification model, causing it to primarily learn patterns from the majority classes while neglecting those of the minority classes.

The application of SMOTE effectively balanced the dataset by generating synthetic instances for minority classes, ensuring
an equal number of samples across all categories, resulting in 29,060 samples per class. This oversampling process addressed
the inherent class imbalance problem in the CIC-IoT2023 dataset, which, if left uncorrected, could bias the learning algorithm
toward majority classes and degrade detection performance for rare attack types. Table 2 provides a detailed summary of the sample
distribution for each class before and after applying SMOTE, illustrating the transformation from an imbalanced dataset to a perfectly
balanced one. The balanced distribution ensures that the classifier receives an equal representation of all classes during training,
thereby enhancing its ability to detect both frequent and infrequent attack categories with comparable accuracy.

Table 2. Comparison of Sample Before and After SMOTE

Label Before SMOTE  After SMOTE
DDoS-UDP _Flood 22048 29060
DDoS-TCP_Flood 18553 29060

DoS-TCP_Flood 10976 29060
DoS-UDP_Flood 13571 29060
DDoS-SYN_Flood 16491 29060
DDoS-ICMP_Flood 29060 29060
DDoS-PSHACK _Flood 17035 29060
DDoS-RSTFINFlood 16597 29060
BenignTraffic 4482 29060
DoS-SYN_Flood 8254 29060
DDoS-ACK Fragmentation 1194 29060
Mirai-udpplain 3754 29060
Mirai-greeth_flood 4002 29060
DNS_Spoofing 738 29060
DDoS-SynonymousIP_Flood 14664 29060
Recon-OSScan 412 29060
Mirai-greip_flood 3005 29060
DDoS-ICMP _Fragmentation 1883 29060
Recon-HostDiscovery 544 29060
DictionaryBruteForce 53 29060
DDoS-UDP_Fragmentation 1175 29060
MITM-ArpSpoofing 1288 29060

(continued on next page)
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Table 2 (continued)

Label Before SMOTE  After SMOTE
DoS-HTTP_Flood 339 29060
SqlInjection 24 29060
VulnerabilityScan 154 29060
Recon-PortScan 350 29060
BrowserHijacking 27 29060
DDoS-SlowLoris 78 29060
DDoS-HTTP_Flood 131 29060
CommandInjection 23 29060
Backdoor_Malware 21 29060
XSS 12 29060
Uploading_Attack 6 29060
Recon-PingSweep 5 29060

Overall, the total number of samples in the dataset increased significantly—by 210,122 to 957,960—following the application
of SMOTE. This substantial expansion enables the model to learn more effectively and recognize patterns associated with minority
classes. Figure 2 below illustrates a comparison of the label distributions before and after applying SMOTE.

Class Distrioution Before and After SMOTE on CIC-IoT2023 Dataset

Atack Label

10000 20000

15000
Number of Samples.

Figure 2. Class distribution before and after SMOTE

These enhancements have a direct and meaningful impact on the model’s overall performance. As illustrated in Table 2, both
recall and F1-score revealed significant improvement following the application of SMOTE. This indicates that the model was no
longer biased toward majority classes and could accurately recognize a broader range of attack types. The balanced dataset achieved
through SMOTE was instrumental in reducing misclassification errors, particularly false negatives, for previously underrepresented
classes. This is especially critical in the realm of IoT cybersecurity, where failing to detect even minor attacks can result in severe
consequences for critical systems. The results reinforce confidence in the model’s reliability and robustness.

3.4. Model Comparison Analysis

To assess the impact of the SMOTE algorithm on the performance of the Random Forest-based cyberattack detection model,
a comparative analysis was conducted between the baseline Random Forest model (without SMOTE) and the SMOTE-enhanced
version. Tables 3 and 4 report detailed per-class performance metrics, comprising precision, recall, and F1-score for all 33 attack
classes. Additionally, Figures 3 and 4 display the corresponding confusion matrices, offering a clear visual comparison of classifica-
tion accuracy across all classes for both models.

Table 3 presents the performance of the Random Forest model devoid of SMOTE. While the model demonstrates high precision
and recall for several majority classes—comprising DDoS-ICMP _Flood, DDoS-TCP_Flood, and DoS-SYN_Flood—it completely
fails to detect several minority classes, such as Backdoor_Malware, BrowserHijacking, CommandInjection, DictionaryBruteForce,
Recon-PingSweep, and SQLInjection, as reflected by an F1-score of 0.00 for these classes. This result clearly indicates a bias toward
the majority classes, underscoring the challenges posed by class imbalance in the dataset. Figure 3 displays the confusion matrix for
the model devoid of SMOTE. The visualization clearly reveals that the majority of misclassifications occur within the minority attack
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classes, whereas the majority classes are classified with near-perfect accuracy. This further highlights the model’s tendency to favor
dominant classes, resulting in a poor detection of underrepresented threats.

Table 3. Model Classification Evaluation Random Forest without Smote

Label Precision  Recall Fl-score
Backdoor_Malware 0.00 0.00 0.00
BenignTraffic 0.79 0.99 0.88
BrowserHijacking 0.00 0.00 0.00
CommandInjection 0.00 0.00 0.00
DDoS-ACK Fragmentation 1.00 0.99 1.00
DDoS-HTTP_Flood 0.97 0.95 0.96
DDoS-ICMP_Flood 1.00 1.00 1.00
DDoS-ICMP _Fragmentation 0.98 0.98 0.98
DDoS-PSHACK _Flood 1.00 1.00 1.00
DDoS-RSTFINFlood 1.00 1.00 1.00
DDoS-SYN_Flood 1.00 1.00 1.00
DDoS-SlowLoris 0.85 0.82 0.84
DDoS-SynonymousIP_Flood 1.00 1.00 1.00
DDoS-TCP_Flood 1.00 1.00 1.00
DDoS-UDP_Flood 1.00 1.00 1.00
DDoS-UDP_Fragmentation 1.00 0.99 0.99
DNS_Spoofing 0.73 0.53 0.61
DictionaryBruteForce 0.00 0.00 0.00
DoS-HTTP_Flood 0.95 0.97 0.96
DoS-SYN_Flood 1.00 1.00 1.00
DoS-TCP_Flood 1.00 1.00 1.00
DoS-UDP _Flood 1.00 1.00 1.00
MITM-ArpSpoofing 0.89 0.74 0.81
Mirai-greeth_flood 1.00 1.00 1.00
Mirai-greip-flood 1.00 1.00 1.00
Mirai-udpplain 1.00 1.00 1.00
Recon-HostDiscovery 0.82 0.73 0.78
Recon-OSScan 0.74 0.25 0.37
Recon-PingSweep 0.00 0.00 0.00
Recon-PortScan 0.86 0.46 0.60
Sqllnjection 0.00 0.00 0.00
Uploading_Attack 1.00 0.50 0.67
VulnerabilityScan 0.85 0.91 0.88
XSS 1.00 0.17 0.29
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Figure 3. Confusion Matrix — Random Forest devoid of Smote

Table 4 presents the classification results of the Random Forest model enhanced by SMOTE. Following dataset balancing, the
model demonstrated notable improvements in detecting minority classes. For instance, DictionaryBruteForce achieved an F1-score
of 0.33, up by 0.00, while SQLInjection improved to an Fl-score of 0.20. At the same time, the majority of classes continued to
maintain high precision and recall, indicating that the model’s performance on dominant classes was not compromised. These results
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confirm that the SMOTE algorithm effectively enhances the model’s ability to detect a broader range of IDS attacks, particularly
those that are typically underrepresented in existing datasets.

Table 4. The Performance of Random Forest by Smote

Label Precision  Recall F1-score
Backdoor_Malware 0.00 0.00 0.00
BenignTraffic 0.84 0.96 0.89
BrowserHijacking 0.00 0.00 0.00
CommandInjection 0.00 0.00 0.00
DDoS-ACK _Fragmentation 0.99 1.00 0.99
DDoS-HTTP_Flood 1.00 0.97 0.99
DDoS-ICMP _Flood 1.00 1.00 1.00
DDoS-ICMP_Fragmentation 0.97 0.99 0.98
DDoS-PSHACK _Flood 1.00 1.00 1.00
DDoS-RSTFINFlood 1.00 1.00 1.00
DDoS-SYN_Flood 1.00 1.00 1.00
DDoS-SlowLoris 0.87 0.93 0.90
DDoS-SynonymousIP_Flood 1.00 1.00 1.00
DDoS-TCP_Flood 1.00 1.00 1.00
DDoS-UDP_Flood 1.00 1.00 1.00
DDoS-UDP_Fragmentation 0.99 0.99 0.99
DNS_Spoofing 0.65 0.60 0.63
DictionaryBruteForce 1.00 0.20 0.33
DoS-HTTP _Flood 0.94 0.97 0.95
DoS-SYN_Flood 1.00 1.00 1.00
DoS-TCP_Flood 1.00 1.00 1.00
DoS-UDP_Flood 1.00 1.00 1.00
MITM-ArpSpoofing 0.84 0.78 0.81
Mirai-greeth_flood 1.00 1.00 1.00
Mirai-greip_flood 0.99 0.99 0.99
Mirai-udpplain 1.00 1.00 1.00
Recon-HostDiscovery 0.79 0.77 0.78
Recon-OSScan 0.65 0.40 0.49
Recon-PingSweep 0.00 0.00 0.00
Recon-PortScan 0.74 0.46 0.57
Sqllnjection 0.33 0.14 0.20
Uploading_Attack 1.00 0.50 0.67
VulnerabilityScan 0.87 0.93 0.90
XSS 1.00 0.17 0.29

Figure 4 presents the confusion matrix for the Random Forest model by SMOTE. The matrix demonstrates a more balanced
classification across all classes, confirming that SMOTE significantly enhances the model’s ability to detect both majority and minor-
ity attack types accurately. Overall, these outcomes underscore the crucial role of data balancing in enhancing the fairness, accuracy,
and robustness of intrusion detection systems.
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Figure 4. Confusion Matrix — Random Forest by Smote
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Table 5. Comparison of Random Forest Performance with and without SMOTE

Metrics Devoid of SMOTE  Random Forest + SMOTE
Accuracy 0.9898 0.9901
Precision 0.9896 0.9898
Recall 0.9898 0.9901
Fl-score 0.9889 0.9896
Cohen’s Kappa 0.9888 0.9892

The results presented in Table 5 reveal that, although the performance gains are relatively modest, the Random Forest model
enhanced by SMOTE consistently outperforms the baseline across all evaluation metrics. Accuracy improved by 0.9898 to 0.9901,
while the F1-score increased by 0.9889 to 0.9896. This balanced improvement in both precision and recall reflects the enhanced
robustness and reliability of the model in detecting a wider range of attack types. The increase in Cohen’s Kappa by 0.9888 to
0.9892—a statistical measure that evaluates observed accuracy against expected accuracy by chance—indicates an improvement in
the model’s predictive alignment by the actual labels, even after accounting for random agreement. This enhancement confirms
that the application of SMOTE has a positive impact on the model’s stability and reliability, particularly in detecting previously
underrepresented cyberattack classes.

3.5. Comparative Analysis by Benchmark Studies

To further validate the effectiveness of the proposed Random Forest + SMOTE model, a comparison was conducted by several
previous studies that also utilized the CIC-IoT2023 dataset—a widely recognized benchmark in IoT security research due to its
comprehensive and diverse attack scenarios. Table 6 presents a concise comparative overview of the studies, highlighting differences
in algorithm, dataset, accuracy, and data balancing approaches.

Table 6 further demonstrates that the proposed method achieves the highest accuracy among all compared studies, reaching
99.01%, and significantly outperforms the other models. For instance, a Study [12] A notable work in IoT security, employing CNN
and CNN-BiLSTM architectures, achieved an accuracy of 98.00%. Meanwhile, the study [19] proposes a two-tier intrusion detection
system (IDS) that uses deep learning models to identify DDoS attacks on IoT networks. Similarly, the Study [17], which explored
the effectiveness of Recurrent Neural Networks (RNNs) on both the CIC-I0T2023 and TON_IoT datasets, achieved an accuracy of
96.56%. In contrast, the Study [20] The model, which introduced the DLMIDPSM model, attained a notably lower accuracy of just
85.00%.

What distinguishes the proposed model is its integration with SMOTE, which effectively addresses class imbalance without
sacrificing the accuracy of the majority classes. Unlike several previous studies that achieved high accuracy at the expense of increased
computational complexity, the Random Forest + SMOTE approach offers both high accuracy and computational efficiency, making
it a practical and scalable solution for real-world IoT security applications.

The comparison presented in Table 6 clearly demonstrates the critical role of data balancing techniques, such as SMOTE,
in significantly enhancing the detection capabilities of conventional classification models in IoT security. This insight is especially
valuable for researchers and practitioners in the field, as it underscores the importance of incorporating such techniques to improve
model performance and ensure more equitable detection across all attack classes.

Table 6. Comparison of The Proposed Approach with The Benchmark Study

Study Dataset Model Accuracy  Balancing
[12] CICIoT2023 CNN, CNN-BiLSTM 98.00% -
[19] CICIoT2023 Two Stage-(DNN, CNN, LSTM) 91.27% -
[17] CIC-10T2023, TON_IoT RNN 96.56% -
[20] CICIoT2023 DLMIDPSM 85% -
Our Model CICIoT2023 RF + SMOTE 99.01% SMOTE

3.6. Discussion

The findings of this study demonstrate that integrating the Synthetic Minority Oversampling Technique (SMOTE) with the
Random Forest algorithm effectively improves the detection of cyberattacks in IoT networks by addressing the severe class imbalance
in the CIC-10T2023 dataset. This outcome is consistent with prior studies highlighting the importance of data balancing in enhancing
intrusion detection performance. Oversampling approaches, such as [10], and hybrid balancing methods, like SMOTE-ENN [11],
have been shown to increase sensitivity to rare attack classes and improve classification stability. Similarly, [21] confirmed that
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effective preprocessing strategies, when integrated with ensemble classifiers, contribute to more robust IDS performance. The present
study strengthens these findings by providing empirical validation on the CIC-IoT2023 dataset, where the application of SMOTE
enables Random Forest to achieve consistent precision, recall, and F1-scores across 33 attack types.

Beyond addressing imbalance, the results also reaffirm the competitiveness of Random Forest as a classifier in IoT security.
Previous studies have shown Random Forest to be robust and interpretable for intrusion detection applications, particularly compared
with more complex deep learning algorithms [6, 22]. Although CNNs, RNNs, and hybrid models have gained prominence in intrusion
detection [2, 4, 19], their deployment in IoT systems is often limited by computational demands. In contrast, this study demonstrates
that Random Forest, when enhanced with SMOTE, achieves state-of-the-art accuracy while remaining computationally efficient,
making it a practical and scalable solution for real-world IoT environments.

4. CONCLUSION

This research has demonstrated the effectiveness of combining the Random Forest algorithm with the Synthetic Minority
Oversampling Technique (SMOTE) in detecting cyberattacks in Internet of Things (IoT) networks, utilizing the CIC-10T2023 dataset.
First, the study successfully evaluated the performance of SMOTE on a highly imbalanced dataset, confirming its capability to
improve the representation of minority attack classes. Second, it implemented and validated the SMOTE-Random Forest algorithm
in a multi-class detection scenario, showing that the integration consistently achieved high performance across all 33 attack types.
Third, by comparing classification performance metrics before and after the balancing process, the results demonstrated significant
improvements in model sensitivity, precision, recall, and Fl-score. The integration of SMOTE effectively resolved the significant
class imbalance present in the original dataset, allowing the model to identify both majority and minority attack types more accurately.
The test results indicate that the proposed model achieved an impressive accuracy of 99.01%, along with consistently high precision,
recall, Fl-score, and Cohen’s Kappa across all 33 attack types. When compared to both the baseline Random Forest model without
SMOTE and several recent deep learning-based approaches, the Random Forest model with SMOTE not only improves detection
accuracy but also offers superior computational efficiency. As such, this study makes a valuable contribution to the development
of reliable and practical intrusion detection systems (IDS) for IoT environments. For future work, future research could explore
further enhancements by integrating hybrid balancing techniques, incorporating feature selection methods, and developing real-time,
ensemble-based IDS solutions for deployment on edge devices, thereby improving detection reliability in real-world applications.
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