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ABSTRACT

Proliferative Diabetic Retinopathy (PDR) is the most severe stage of Diabetic Retinopathy (DR), carry-
ing the highest risk of complications. Automatic detection can help provide earlier and more accurate
PDR diagnosis, but prediction accuracy may decline due to limitations in retinal images. Therefore,
image enhancement techniques are often applied to improve DR classification. This study aims to
detect PDR from retinal images using Convolutional Neural Networks (CNNs) and to evaluate the im-
pact of three enhancement methods. This research method is based on a CNN architecture, including
ResNet34, InceptionV2, and DenseNet121, as well as enhancement methods such as CLAHE, Ho-
momorphic Filtering (HF), and Multiscale Contrast Enhancement (MCE). The results of this research
show that CNN performance varies across architectures and enhancement methods. The highest per-
formance was achieved using ResNet34 with HF, yielding an accuracy of 0.976, precision of 0.934,
and recall of 0.904. CLAHE generally improved performance across architectures, achieving the best
average accuracy of 0.953, whereas MCE decreased classification accuracy. Overall, the findings
highlight the importance of selecting appropriate enhancement methods to improve PDR detection
accuracy. Implementing such systems in clinical screening could help reduce the risk of vision im-
pairment among diabetic patients.
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1. INTRODUCTION

Diabetes is a condition that disrupts insulin production, a hormone that regulates blood sugar levels and converts glucose into
energy. Diabetes also results in disturbances in the metabolism of carbohydrates, fats, and proteins [1]. According to the 2021 report
from the Ministry of Health of the Republic of Indonesia, 19.47 million people were living with diabetes in Indonesia [2]. The 2022
report from the International Diabetes Federation (IDF) stated that Indonesia ranked first in ASEAN for the number of type 1 diabetes
patients, with a total of 41,817 cases [3]. Diabetic retinopathy, also known as diabetic eye disease, is a condition that damages the
retina in individuals with diabetes. The number of diabetic retinopathy patients reached 126.6 million in 2010 and is projected to
rise to 191 million by 2030 [4]. To detect this disease, a doctor must manually identify it, which is a lengthy process. Therefore, a
method is needed to assist and facilitate ophthalmologists in diagnosing diabetic retinopathy more quickly and accurately in retinal
images [5]. Diabetic retinopathy (DR) is divided into five stages: mild, moderate, severe, proliferative, and normal (without diabetic
retinopathy) [6]. Proliferative Diabetic Retinopathy (PDR) represents the most advanced and vision-threatening stage of diabetic
retinopathy. Structural changes in retinal blood vessels occur in the PDR stage. Fragile and easily ruptured new blood vessels form
on the retina of PDR patients, which can cause permanent vision loss if not treated immediately. Compared to earlier stages of
DR, PDR has a much higher risk of severe complications and requires more cost for treatment [7]. Thus, early detection of PDR is
essential to prevent irreversible vision loss, minimize treatment costs, and improve patients’ quality of life.

Machine learning is widely used for research in various fields. Deep learning is a subfield of machine learning that utilizes deep
neural network architectures to generate predictions or classifications. One type of deep learning is the Convolutional Neural Network.
Convolutional Neural Network is often used in image classification, object detection, and object tracking [8]. Convolutional Neural
Networks have been applied in various fields, including skin cancer pigment classification [9], wood types [10], crowd detection
[11], and food classification [12]. CNNs are widely used for medical image classification because they can handle complex data
and automatically extract features from medical images. The application of CNN in medical imaging includes the detection of DR
in retinal images. Image enhancement methods are often applied to improve the quality of the images to be processed. Several
studies have demonstrated the effectiveness of CNNs for diabetic retinopathy detection, and they are often combined with image
enhancement techniques to improve classification accuracy. Qiao et al. [13] focused on early-stage detection, which is beneficial for
prevention but less effective in addressing advanced stages such as Proliferative Diabetic Retinopathy (PDR). Similarly, Putra et al.
[14] examined Non-Proliferative DR (NPDR) detection with image enhancement techniques such as CLAHE, Morphology Contrast
Enhancement, and Homomorphic filtering combined with CNN architectures like GoogLeNet and ResNet variants. While Hemanth
et al. [15] applied CNN combined with Histogram Equalization (HIST) and Contrast Limited Adaptive Histogram Equalization
(CLAHE) for DR diagnosis, and Hayati et al. [5] investigated DR detection using CLAHE and various CNN architectures, including
VGG16, InceptionV3, and EfficientNetB4.

Further, Alwakid et al. incorporated CNN DenseNet-121 [16] and Inception-V3 [17] architectures with enhancement tech-
niques, including Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN), HIST, and CLAHE, to differentiate the
stage of DR. El-Hoseny [18] utilized VGG16 for distinguishing between different classes of diabetes, while Ishtiaq et al. [19] com-
bined machine learning–based feature extraction with CNN for DR stage classification. Pamungkas et al. [20] explored multiple
architectures such as EfficientNet-B4, ResNet-50, DenseNet-201, Xception, and Inception-ResNet-v2, and Lee et al. [21] modified
VGG-16 and ResNet-50 with dropout for severity grading, using CLAHE during preprocessing to improve image quality. Previous
work demonstrated that CNNs with various architectures can achieve high accuracy in classifying DR stages, particularly early-stage
(non-proliferative) stages. Their research also showed that applying image enhancement methods, such as CLAHE and other prepro-
cessing techniques, can improve classification performance. There are gaps that previous research has not resolved: most existing
studies did not systematically compare different enhancement methods nor specifically evaluate their effectiveness for PDR, which is
the most vision-threatening stage due to the formation of fragile new blood vessels and the high risk of permanent vision loss. This
creates a critical research gap, as accurate detection of PDR is essential for timely intervention and prevention of blindness.

The novelty of this research lies in its specific focus on detecting PDR using CNNs combined with retinal image enhancement
techniques. The purpose of this study is to develop and evaluate a CNN-based model for detecting PDR in enhanced retinal images,
thereby improving classification accuracy and providing a reliable tool for clinical decision-making. This problem is important to
address because PDR involves fragile new blood vessels that can rupture and cause irreversible vision loss if left untreated promptly.
Accurate detection of PDR enables timely intervention, reduces healthcare costs, and helps prevent blindness among diabetic pa-
tients. In this study, we evaluate three image enhancement techniques-CLAHE, homomorphic filtering, and multiscale contrast
enhancement-with CNN architectures, including ResNet34, InceptionV2, and DenseNet121, to identify the most effective techniques
for PDR detection.
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2. RESEARCH METHOD
In general, the proposed method is illustrated in Figure 1, with retinal images serving as the input data. The preprocessing

stage is carried out sequentially: first, the green channel is extracted, and then the images are resized to ensure uniformity. Following
preprocessing, image enhancement is performed separately using three different techniques: CLAHE, Homomorphic Filtering, and
Multiscale Contrast Enhancement. Each enhanced image is then independently subjected to feature extraction and classification using
a Convolutional Neural Network (CNN). For this study, the APTOS 2019 dataset is used, which categorizes images into two classes:
normal and PDR. The ratio of normal to PDR classes in the dataset is approximately 6:1.

Figure 1. Research method flow

2.1. Data Input
The input data consists of retinal images in RGB format, sourced from the Kaggle APTOS 2019 dataset [22]. The APTOS

2019 dataset was selected because it provides a larger number and greater variety of retinal images compared to MESSIDOR 1 and
2, offers better image quality and more consistent class labeling than EyePACS, and is publicly accessible. This dataset contains
3,662 retinal images. Image resolution varies from 1,536 × 2,048 to 2,848 × 4,288, depending on the device used to capture the
images. While the images are high resolution, some may appear blurry, overexposed, or underexposed. Additionally, certain images
contain noise, blurring, and lighting variations, which can impact the model’s accuracy. To address these issues, image enhancement
techniques, including CLAHE, homomorphic filtering, and multiscale contrast enhancement, were applied to improve image quality
before classification.

Classes with higher severity levels tend to have fewer samples compared to the ”no retinopathy” class. An example image
from the APTOS 2019 dataset is shown in Figure 2. In this dataset, the classes are divided into five categories: 0 - No DR, 1 - Mild,
2 - Moderate, 3-Severe, and 4 - Proliferative DR. Since this study focuses on detecting proliferative diabetic retinopathy (PDR),
data selection is performed before analysis. Only data labeled as 0 and 4 are included in the study, while data with other labels are
removed. A total of 2,100 data points are used as input, comprising 1,805 in class 0 (normal) and 295 in the PDR class. In this study,
no specific balancing techniques were applied. The model was trained directly on the imbalanced data distribution to evaluate the
effects of image enhancement and CNN architectures on PDR detection. This approach also reflects the actual prevalence of PDR in
clinical settings.

Figure 2. Example of an image in the APTOS 2019

Proliferative Diabetic Retinopathy . . . (Wilda Imama Sabilla)



164 ❒ ISSN: 2476-9843

2.2. Preprocessing
During preprocessing, two sequential steps were applied: extraction of the green channel to emphasize retinal structures,

followed by image resizing to a standardized dimension. Using the green channel in retinal images is considered more effective
because it offers higher contrast than the red or blue channels, making features such as microaneurysms, hemorrhages, and exudates
more visible. This enhanced visibility is crucial for identifying diabetic retinopathy, which is often challenging to detect in other
color channels [23]. The original image and the green-channel image are shown in Figure 3.

Figure 3. Original image and green channel image

The next data preprocessing step involves resizing the images to ensure uniform dimensions. Image resizing is the process
of adjusting an image’s size to match the input dimensions required by a Convolutional Neural Network (CNN) model. High-
resolution images demand significant computational resources, both in terms of memory and processing time. By resizing the
images, we can reduce their dimensions while preserving the essential information needed for classification. After resizing, the
image dimensions used as input for the CNN are (224×224) pixels. The input size of 224×224 pixels was chosen because many
CNN architectures are pretrained on ImageNet with this input resolution [24]. Additionally, previous work in medical imaging (such
as breast ultrasound classification) has shown that 224×224 often strikes a good balance in preserving detail for feature extraction
while keeping computational costs manageable [25]. The image before resizing and the image after resizing are shown in Figure 4.

Figure 4. Before and after resizing

2.3. Image Enhancement
Image enhancement methods are techniques used to improve image quality or extract valuable information from it. The pri-

mary goal is to make the image easier to interpret, enhance visual features, or reduce noise. In this study, image enhancement
techniques-CLAHE, homomorphic filtering, and multiscale contrast enhancement-were applied separately to retinal images prior to
PDR detection using a CNN. We selected CLAHE, homomorphic filtering, and multiscale contrast enhancement as image enhance-
ment techniques because each method offers complementary benefits for medical images. CLAHE is well-suited for enhancing local
contrast while limiting noise amplification, as has been demonstrated by Hayati et al. [5]. Homomorphic filtering is effective in cor-
recting nonuniform illumination and enhancing high-frequency structural detail [14]. Meanwhile, multiscale contrast enhancement
amplifies structures across multiple spatial scales and is closely related to superpixel-based multiscale homomorphic techniques that
preserve both fine and coarse features. By comparing these three methods, we aim to determine which image enhancement approach
best supports CNN performance in detecting Proliferative Diabetic Retinopathy.
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1. CLAHE
CLAHE (Contrast Limited Adaptive Histogram Equalization) is an image processing technique designed to enhance image
contrast while preserving fine details and preventing excessive contrast in areas with high intensity variation. The CLAHE
technique enhances contrast by processing small sections of an image, known as tiles. Each tile’s contrast is adjusted to align
its histogram with a predefined distribution. To ensure smooth transitions between tiles, bilinear interpolation is applied to
blend adjacent regions [5]. This method aims to create a seamless overall appearance. Generally, the process includes calcu-
lating local histograms, determining cumulative distributions, and normalizing the image.

In this study, CLAHE was applied after resizing the image to 224 × 224 pixels. Several parameters are configured when
applying CLAHE using the Python library. The parameter that controls the degree of contrast limiting in each local histogram
block in CLAHE (ClipLimit) is set to 4.0. And the parameter that determines the grid size for local histogram equalization
in CLAHE (tileGridSize) is set to (8, 8). The ClipLimit and the tileGridSize values were selected based on preliminary
experiments, as they provided a balance between enhancing vessel visibility and avoiding over-amplification of noise. The
image before and after applying CLAHE are shown in Figure 5.

Figure 5. Before and after CLAHE

2. Homomorphic Filter
Homomorphic filtering is an image processing technique that enhances contrast while preserving both low- and high-intensity
information. The method involves several steps. First, the input image is logarithmically transformed to reduce intensity
variations. Next, the image is converted into the frequency domain using the Fourier Transform. In the frequency domain,
high-frequency and low-frequency components are processed separately. Low-frequency components are adjusted to enhance
contrast, while high-frequency components are modified to improve clarity. The processed image is then returned to the spatial
domain through an inverse Fourier Transform [26].
Three parameters are configured for the homomorphic filter in the application using the Python library. The parameter d0 (cut-
off frequency) determines the boundary between low-frequency components (illumination) and high-frequency components
(details), with d0 = 40. The parameter gammaL (low-frequency gain) controls the attenuation of low-frequency components
(illumination). The parameter gammaH (high-frequency gain) is a gain factor that controls the amplification of high-frequency
components (details or reflectance). In this study, gammaL = 2.0 and gammaH = 2.5 are set. Homomorphic filtering was
applied in the frequency domain using a Gaussian high-pass filter with a cutoff frequency of 40 and gain constants (γL = 2.0,
γH = 2.5), based on some experiments, to reduce non-uniform illumination and enhance fine details. The images before and
after applying homomorphic filtering are shown in Figure 6.

Figure 6. Before and after Homomorphic Filtering
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3. Multiscale Contrast Enhancement
Multiscale Contrast Enhancement is an image processing technique that improves contrast across multiple scales or resolution
levels. This method utilizes the wavelet transform, which efficiently captures features at both large and small scales. At each
level of transformation, the image is divided into components—horizontal, vertical, and diagonal details—each of which can
have its contrast enhanced. The wavelet transform is also recognized as one of the most effective methods for reducing random
noise in images [27]. Two parameters set during multiscale contrast enhancement are the wavelet and the level. A wavelet
is a mathematical function used to analyze signals or images in the time-frequency domain. In this study, the Python library
was used, and the ’db1’ (Daubechies level 1) wavelet was employed. The level parameter determines the number of scale
decompositions applied to the image, with a value of 2. The images before and after applying multiscale contrast enhancement
are shown in Figure 7.

Figure 7. Before and after multiscale contrast enhancement

2.4. Feature Extraction and Classification
This stage extracts image features and classifies them as either normal or PDR using a CNN. A Convolutional Neural Network

(CNN) is a specialized neural network architecture designed to process and interpret image data. It excels at identifying spatial
structures and hierarchical features within visual inputs. In CNN, feature extraction is performed through the following stages:

a. Convolutional Layers: CNN uses convolutional layers to extract features from images. These layers contain filters, or kernels,
that move across the image to detect specific patterns, such as edges, corners, or textures.

b. Pooling Layers: After passing through the convolutional layer, a pooling layer is applied to reduce the spatial dimensions of the
extracted features. Max pooling or average pooling is used to retain the most important information by selecting the maximum
or average value within a given region.

c. Activation Functions: The activation function, using ReLU (Rectified Linear Unit), is applied to introduce non-linearity into
the model, allowing CNN to capture more complex relationships between extracted features.

d. Normalization Layers: CNN includes normalization layers (Batch Normalization) to accelerate convergence and ensure training
stability.
Meanwhile, for classification in CNN, the stages used are as follows:

1. Flattening: After the convolutional and pooling layers, the output is flattened into a one-dimensional vector. This process
organizes the extracted features into a format that fully connected layers can process.

2. Fully Connected Layers: These layers are connected to every neuron in the previous layer, allowing the network to understand
relationships between extracted features and perform classification based on that information.

3. Activation Functions: Activation functions are applied in the output layer to generate a probability distribution for each class,
enabling the model to predict the most likely class.

4. Loss Function: CNN uses a loss function to measure how close the model’s predictions are to the actual class labels.
5. Optimization: The optimization process is used to adjust the weights and biases in the network to minimize the loss function.

[28].
Three CNN architectures are used in this study: ResNet34, InceptionV2, and DenseNet121. A consistent set of parameter

values is applied across all architectures during model training. The training parameters were selected based on both common
practices in CNN-based medical image classification and empirical testing. Several experiments were conducted with varying batch
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sizes, epochs, and learning rates. The final configuration consisted of a batch size of 16, 10 epochs, and the Adam optimizer with
a learning rate of 0.001. Binary cross-entropy was used as the loss function since the task involves binary classification. This
configuration consistently produced the best balance between accuracy and training stability. This final configuration achieved the
highest accuracy among the tested settings.

1. ResNet-34
ResNet-34 is a member of the ResNet architecture family, introduced by He et al. in their paper ”Deep Residual Learning
for Image Recognition” [29]. This model incorporates residual blocks, enabling the network to grow deeper without suffering
from the vanishing gradient issue commonly found in very deep networks. These residual blocks feature skip connections that
bypass certain layers, allowing information to pass directly from input to output without traversing every intermediate layer.
ResNet-34 is composed of 34 layers, utilizing 3×3 convolutions, pooling operations, and skip connections. Hayati et al [5]
also used ResNet-34 for diabetic retinopathy classification.

2. InceptionV2
InceptionV2 is an improved version of the Inception architecture, introduced by Szegedy et al. in 2015 [30]. It builds on Incep-
tionV1 (GoogLeNet) and adds enhancements to improve computational efficiency. The Inception block enables the network to
apply convolutional filters of various sizes and perform pooling simultaneously. To optimize performance, larger convolutions
such as 5×5 are replaced with two consecutive 3×3 convolutions, reducing the number of parameters and accelerating com-
putation. Additionally, batch normalization is integrated throughout the architecture to enhance training stability. Studies on
MRI data for brain tumors show that InceptionV2 can be effective in medical imaging [31].

3. DenseNet121
DenseNet was proposed by Gao Huang et al. in 2016 [32]. It features a unique connectivity pattern where each layer receives
input from all preceding layers. DenseNet-121, a specific variant with 121 layers, utilizes dense blocks in which the output
of each layer is directly linked to every subsequent layer within the same block. This design facilitates efficient information
and gradient flow across the network. The architecture of DenseNet-121 comprises four dense blocks and incorporates batch
normalization, ReLU activation, and convolutional layers throughout. DenseNet121 with a specific optimizer achieves high
accuracy, demonstrating that this architecture is effective and competitive in DR classification [33].

2.5. Model Evaluation
To evaluate the model, the metrics used are accuracy, precision, and recall. Normal data predicted as normal is counted as a

True Positive (TN), whereas data predicted as PDR is considered a False Negative (FN). Similarly, PDR data predicted as PDR is
counted as True Negative (TP), but if it is predicted as normal, it is considered False Positive (FN) [34]. Thus, accuracy, precision,
and recall can be calculated using equations (1) to (3).

accuracy =
TP + TN

TP + FP + FN + TN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

Table 1. Test Scenario

Scenario Enhancement Image Method CNN Architecture
1 No ResNet34
2 No InceptionV2
3 No DenseNet121
4 CLAHE ResNet34

(continued on next page)
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Table 2 (continued)

Scenario Enhancement Image Method CNN Architecture
5 CLAHE InceptionV2
6 CLAHE DenseNet121
7 Homomorphic filter ResNet34
8 Homomorphic filter InceptionV2
9 Homomorphic filter DenseNet121

10 Multiscale contrast enhancement ResNet34
11 Multiscale contrast enhancement InceptionV2
12 Multiscale contrast enhancement DenseNet121

Table 1 presents the testing scenarios, comparing classification evaluation results for PDR detection across various image
enhancement techniques and different CNN architectures. The data used in the testing process comes from the APTOS 2019 dataset.
The evaluation of the CNN model was conducted by splitting the input data into training and test datasets at a 80:20 ratio. The details
of the data distribution are shown in Table 2.

Table 2. Classification Data Descriptions

Data Label Training Data Testing Data
Normal 1448 357

PDR 232 63
Total 1680 420

3. RESULT AND ANALYSIS

The CNN training process used ResNet34, InceptionV2, and DenseNet121 architectures. The dataset was split into training
and test sets, and training was performed with a batch size of 16, a learning rate of 0.001, the Adam optimizer, and binary cross-
entropy loss. The models were trained for 10 epochs. During training, the accuracy gradually increased while the loss decreased,
indicating that the networks successfully learned feature representations of retinal images. The testing phase was then performed on
420 images, comprising 357 normal and 63 PDR cases. Testing was conducted in 12 scenarios to evaluate system performance using
accuracy, precision, and recall metrics. PDR classification testing was performed by modifying the test images, including original
retinal images and retinal images enhanced with CLAHE, homomorphic filtering, and multiscale contrast enhancement. Then CNN
architectures were used, namely ResNet34, InceptionV2, and DenseNet121.

The evaluation results for the original images without enhancement are shown in Table 3. In this table, the classification
accuracy is relatively high across all architectures. The highest accuracy was achieved with the ResNet34 architecture at 0.959. For
precision, the highest value of 0.916 was obtained using the InceptionV2 architecture. However, InceptionV2 had the lowest recall,
0.698, meaning that out of 63 PDR images in the test set, only 44 were correctly detected, while 19 were misclassified as normal.

Table 3. The Evaluation Results for The Original Images

Architecture Accuracy Precision Recall TP (PDR detected) FN (PDR missed)
ResNet34 0.959 0.896 0.825 52 11

InceptionV2 0.945 0.916 0.698 44 19
DenseNet121 0.935 0.764 0.825 52 11

Average 0.946 0.859 0.783 49.3 13.7

For images enhanced with CLAHE, the evaluation results are shown in Table 4. An improvement in classification accuracy
is observed for the DenseNet121 and InceptionV2 architectures, whereas it remains unchanged for ResNet34. The highest accuracy
was achieved with the ResNet34 architecture at 0.959. With CLAHE, InceptionV2 achieved a recall of 0.825, detecting 52 PDR cases
correctly and missing 11. Additionally, the average precision increased.
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Table 4. The Evaluation Results for CLAHE-Enhanced Images

Architecture Accuracy Precision Recall TP (PDR detected) FN (PDR missed)
ResNet34 0.959 0.896 0.825 52 11

InceptionV2 0.957 0.881 0.825 52 11
DenseNet121 0.943 0.898 0.698 44 19

Average 0.953 0.892 0.783 49.3 13.7

Table 5 presents the evaluation results for images enhanced with the homomorphic filter. The table shows an improvement in
classification accuracy for the ResNet34 and InceptionV2 architectures. However, accuracy, precision, and recall values decreased
when using the DenseNet121 architecture. The highest accuracy was achieved with the ResNet34 architecture at 0.976, meaning that
57 of 63 PDR cases were correctly detected while only six were missed. There was also an increase in average precision, but the
recall for DenseNet121 was significantly low.

Table 5. The Evaluation Results for The Homomorphic Filter-Enhanced Images

Architecture Accuracy Precision Recall TP (PDR detected) FN (PDR missed)
ResNet34 0.976 0.934 0.904 57 6

InceptionV2 0.964 0.913 0.841 53 10
DenseNet121 0.885 0.800 0.317 20 43

Average 0.942 0.882 0.687 43.4 19.6

The evaluation results for images enhanced with multiscale contrast enhancement are presented in Table 6. An improvement in
classification accuracy is observed for the ResNet34 and InceptionV2 architectures. However, accuracy, precision, and recall values
decreased for the DenseNet121 architecture, although the decline was not as significant as with the homomorphic filter. The highest
accuracy was achieved with the ResNet34 architecture at 0.962. With ResNet34, recall reached 0.841, meaning 53 PDR cases were
correctly detected, while 10 were missed. Additionally, the average precision increased.

Table 6. The Evaluation Results for Multiscale Contrast Enhancement Images

Architecture Accuracy Precision Recall TP (PDR detected) FN (PDR missed)
ResNet34 0.962 0.898 0.841 53 10

InceptionV2 0.959 0.883 0.841 53 10
DenseNet121 0.902 0.805 0.460 29 34

Average 0.941 0.862 0.714 45 18

Based on the testing results, the accuracy, precision, and recall values for the original images were already relatively high,
although recall remained below 80%. The highest accuracy, precision, and recall were achieved with ResNet34 and the homomorphic
filter, at 0.976, 0.934, and 0.904, respectively. With the homomorphic filter, InceptionV2 also achieved the highest evaluation scores
compared to other image enhancement techniques. On average, CLAHE-enhanced images produced the best evaluation results,
with average accuracy, precision, and recall of 0.953, 0.892, and 0.783, respectively. The lowest performance was observed with
multiscale contrast enhancement. The number of PDR cases successfully detected (TP) and missed (FN) varies across architectures
and enhancement methods. The best result was obtained with ResNet34 combined with the homomorphic filter, which detected 57 of
63 PDR cases (recall 0.904). In contrast, DenseNet121 consistently produced lower recall, particularly with the homomorphic filter
(recall 0.317, only 20 detected cases).

This research finds that CNN architectures can classify PDR from retinal images, with performance varying across networks
and image enhancement techniques. ResNet34 consistently outperformed other architectures, achieving the best balance of accuracy,
precision, and recall. The homomorphic filter in particular provided the highest scores, reaching 0.976 accuracy, 0.934 precision,
and 0.904 recall. From a clinical perspective, recall is a critical metric because it reflects the ability to identify PDR cases correctly.
False negatives represent missed detections, which could delay diagnosis and treatment for patients at risk. As shown in Table 5,
ResNet34 missed only 6 cases, whereas DenseNet121 failed to detect 43 of 63 PDR images, making it unsuitable for reliable PDR
detection. The performance differences also highlight the role of image enhancement. Among the three enhancement techniques
evaluated, CLAHE and homomorphic filtering consistently improved the classification results, particularly in terms of accuracy and
precision. CLAHE generally improved model stability across architectures, yielding the best average performance. Homomorphic
filtering provided the highest peak performance, particularly for ResNet34, though DenseNet121 suffered greatly under this condition.
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The experimental results demonstrated that image enhancement significantly improves CNN performance in detecting Proliferative
Diabetic Retinopathy (PDR).

Compared to previous studies on diabetic retinopathy detection, our results are consistent with findings that CNN-based meth-
ods can achieve high accuracy when combined with appropriate preprocessing. The study by Putra et al. [14] reported that applying
image enhancement and additional feature reduction improved DR detection accuracy from 85% to 87.5%. Among the tested meth-
ods, homomorphic filtering achieved the best results. These findings are consistent with those of Hayati et al. [5], who observed
performance improvements across almost all CNN architectures when CLAHE was applied. However, a slight difference was noted:
in Hayati’s work, applying CLAHE with ResNet34 did not improve accuracy, whereas in the present study, it did. This discrepancy
may be attributed to differences in parameter settings when applying CLAHE and ResNet34, suggesting that careful parameter se-
lection can significantly enhance CNN performance. And according to Lee’s study [21], CLAHE likely improves local contrast in
fundus images, which tends to help CNN architectures more reliably identify critical features, particularly for severity grading. This
interpretation aligns with the present results, which show that several combinations of enhancement methods and CNN architectures
reduced PDR detection errors (false negatives). On the other hand, multiscale contrast enhancement showed limited benefit and, in
some cases, reduced recall, suggesting that its parameter settings may not have been optimal for PDR feature extraction. In some
cases, performance even decreased compared to the original, unenhanced images, especially in recall. This may indicate that MCE
introduces noise or alters key retinal structures, making it harder for CNN architectures to extract relevant features for PDR detection.

There are two implications of these results. First, they recommend CLAHE and homomorphic filtering as preprocessing steps
for CNN-based PDR detection systems. These techniques not only improve classification performance but also help mitigate the
negative impact of variations in image illumination and contrast, which are often found in retinal datasets. Second, the relatively
low recall in certain scenarios emphasizes the importance of handling dataset imbalance to avoid missed PDR diagnoses, which are
clinically critical. Future research could address this limitation by applying data augmentation or generative adversarial networks
(GANs) to improve the sensitivity of CNN models to PDR cases. Data augmentation techniques, such as rotation and flipping, can
be applied to input images to increase data diversity. To improve model performance, transfer learning from pre-trained models can
also be used.

4. CONCLUSION

This study aimed to evaluate the effectiveness of image enhancement techniques, including CLAHE, homomorphic filtering,
and multiscale contrast enhancement, for the the detection of Proliferative Diabetic Retinopathy (PDR) using several CNN architec-
tures (ResNet34, InceptionV2, and DenseNet121). The evaluation was conducted using the APTOS 2019 dataset to obtain normal
and PDR classes. The experimental results demonstrate that CLAHE and homomorphic filtering consistently improved CNN perfor-
mance. The highest performance was achieved using ResNet34 with homomorphic filtering, yielding an accuracy of 0.976, precision
of 0.934, and recall of 0.904. These findings indicate that appropriate image enhancement significantly improves model accuracy
and recall, which are critical for reducing false-negative cases in PDR detection. In contrast, multiscale contrast enhancement did
not improve performance and, in some cases, decreased recall, indicating that not all enhancement methods are equally effective for
PDR detection. The findings also highlight that class imbalance remains a challenge, as recall values for PDR detection were lower
than for normal classes.

Overall, this study highlights the importance of selecting appropriate image enhancement techniques in medical image classi-
fication. By systematically comparing enhancement methods, the results deepen understanding of how image quality affects CNN
performance in PDR detection and lay a foundation for developing more robust, clinically applicable automated diagnostic tools.
Future work may address class imbalance problems through techniques such as data augmentation or oversampling. Additionally,
further adjustments to image enhancement parameters can be made to find optimal values that maximize the quality of retinal images.
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