
Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer
Vol. 24, No. 2, March 2025, pp. 321∼332
ISSN: 2476-9843, accredited by Kemenristekdikti, Decree No: 200/M/KPT/2020
DOI: 10.30812/matrik.v24i2.4833 ❒ 321

Evaluation Analysis of the Necessity of Stemming and Lemmatization
in Text Classification

Ni Wayan Sumartini Saraswati1, Christina Purnama Yanti1, I Dewa Made Krishna Muku1, Dewa Ayu Putu Rasmika Dewi2
1Institut Bisnis dan Teknologi Indonesia, Denpasar, Indonesia

2Monash University, Melbourne, Australia

Article Info

Article history:

Received January 21, 2025
Revised February 27, 2025
Accepted March 10, 2025

Keywords:

Lemmatization;
Performance;
Stemming;
Support Vector Machine;
Text Classification.

ABSTRACT

Stemming and lemmatization are text preprocessing methods that aim to convert words into their
root and to the canonical or dictionary form. Some previous studies state that using stemming and
lemmatization worsens the performance of text classification models. However, some other studies
report the positive impact of using stemming and lemmatization in supporting the performance of text
classification models. This study aims to analyze the impact of stemming and lemmatization in text
classification work using the support vector machine method, in this case, devoted to English text
datasets and Indonesian text datasets, and analyze when this method should be used. The analysis
of the experimental results shows that the use of stemming will generally degrade the performance
of the text classification model, especially on large and unbalanced datasets. The research process
consisted of several stages: text preprocessing using stemming and lemmatization, feature extraction
with Term Frequency-Inverse Document Frequency (TF-IDF), classification using SVM, and model
evaluation with 4 experiment scenarios. Stemming performed the best computation time, completing
in 4 hours, 51 minutes, and 41.3 seconds on the largest dataset. While lemmatization positively im-
pacts classification performance on small datasets, achieving 91.075% accuracy results in the worst
computation time, especially for large datasets, which take 5 hours, 10 minutes, and 25.2 seconds. The
Experimental results also show that stemming from the Indonesian balanced dataset yields a better text
classification model performance, reaching 82.080% accuracy.

Copyright ©2025 The Authors.
This is an open access article under the CC BY-SA license.

Corresponding Author:

Ni Wayan Sumartini Saraswati, +62 812 4653 960,
Faculty of Technology and Informatics,
Institut Bisnis dan Teknologi Indonesia, Denpasar, Indonesia,
Email: sumartini.saraswati@instiki.ac.id.

How to Cite:
N. W. Saraswati, C. P. Yanti, I. D. M. K. Muku, and D. A. Dewi, ”Evaluation Analysis of the Necessity of Stemming and Lemmatiza-
tion in Text Classification ”, MATRIK: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer, Vol.24, No.2, pp. 321-332,
March, 2025.
This is an open access article under the CC BY-SA license (https://creativecommons.org/licenses/by-sa/4.0/)

Journal homepage: https://journal.universitasbumigora.ac.id/index.php/matrik

accredited by Kemenristekdikti, Decree No: 200/M/KPT/2020
https://creativecommons.org/licenses/by-sa/4.0/
mailto:sumartini.saraswati@instiki.ac.id.
https://creativecommons.org/licenses/by-sa/4.0/
https://journal.universitasbumigora.ac.id/index.php/matrik

322 ❒ ISSN: 2476-9843

1. INTRODUCTION
Natural Language Processing (NLP) constitutes a multifaceted field situated at the intersection of linguistics, computer science,

and artificial intelligence. Its primary objective is to facilitate seamless computer-human interaction by enabling computers to process
and analyze substantial volumes of human language data effectively [1]. Stemming emerges as a significant preprocessing technique
within NLP. This technique reduces words to their base form, the stem, by systematically removing prefixes, suffixes, and inflectional
endings. Acknowledging that the resulting stem may not always correspond to a lexically valid word within the language is crucial.
Nevertheless, it is a concise and simplified representation encompassing all related word forms.

The benefits of stemming are that it reduces redundancy in text data by mapping similar words to the same root word. Secondly,
it simplifies the representation of text, making NLP tasks more efficient. Stemming is very important in NLP, as this procedure
facilitates the analysis of textual data and improves the accuracy of classification and information retrieval [1]. By reducing words
to their root form, stemming facilitates the consolidation of related words, improves search accuracy, and reduces redundancy [1].
Some other benefits include better information retrieval, more accurate text classification, less storage space usage, easier sentiment
analysis, normalized text, reduced noise in text data, better information extraction process, and simplified language processing tasks.
Despite its great benefits in NLP, stemming has limitations where words can lose meaning where prefixed words can lose their
grammatical or contextual meaning (e.g., ”relational” becomes ”relat”). Excessive word division, where aggressive truncation can
cause unrelated words to be mapped to the same root word (e.g., ”universe” and ”university”). Under-wording, where insufficient
truncation can fail to group related words (e.g., ”automate” and ”automation”). Overcoming some of these problems, some NLP
research uses lemmatization as a substitute for stemming. Lemmatization is an NLP processing technique that reduces words to their
canonical or dictionary form, known as lemmas, while preserving their meaning and grammatical context. Unlike stemming, which
simply truncates words to their root form using rule-based heuristics, lemmatization considers the part of speech (POS) and the word’s
meaning. One of the important jobs in NLP is text classification, which is a fundamental task in NLP [2]. Text classification is the
process of categorizing or labeling text data using established criteria. Text classification is commonly utilized in various applications,
including spam detection, sentiment analysis, hate speech identification, subject categorization, and many more. Classifying text gets
more difficult when created from varied sources such as business, social media, education, and e-commerce [3].

The study in [4] explored the impact of stemming in text classification using lexical features. This research utilizes 30 English
electronic essays focusing on several topics, including politics, history, science, prose, sports, and food. The classification methods
used are linear hierarchical clustering and non-linear clustering (SOM) for both stemmed and non-stemmed data. Another cluster-
ing case conducted by [5] focused on Ukrainian-language tweets. This study compared three text representation techniques: Term
Frequency-Inverse Document Frequency (TF-IDF), Bag of Words (BoW), and Bidirectional Encoder Representations from Trans-
formers (BERT). In addition, they analyzed the impact of lemmatization and stemming on clustering quality. The clustering methods
used in this study included K-Means, Agglomerative Hierarchical Clustering, and Hierarchical Density-Based Spatial Clustering of
Applications with Noise (HDBSCAN). This study evaluated various combinations of these clustering techniques with different text
processing approaches, TF-IDF, BOW, and BERT, as well as three-word processing scenarios: lemmatization, stemming, and orig-
inal (without stemming or lemmatization). Another study [6] applied various combinations of 12 preprocessing techniques to three
English Twitter datasets related to hate speech and abusive language to improve the quality of short texts. Five machine learning
methods and two deep learning methods were used for the classification: SVM, Naı̈ve Bayes, Logistic Regression, Decision Tree,
Random Forest, RNN, and CNN. Research involving other languages, such as Uyghur, Kazakh, and Kirghiz, was conducted by [7],
who proposed a stemming method across multiple languages to study morpho-phonetic changes based on character-based embed-
dings and sequential modeling. Research [8] utilizes Twitter data to examine the impact of preprocessing techniques by implementing
six preprocessing techniques with various machine learning models as classifiers. Despite these studies, no research has specifically
used SVM as a classifier to compare stemming and lemmatization for Indonesian and English languages. This study aims to fill
this gap by using review data from Booking.com and Twitter related to hate speech. Additionally, this study examines the impact of
preprocessing on both large and small datasets to analyze the effect of preprocessing across different data scales.

More research is needed to investigate the impact of preprocessing on pre-trained models in natural language processing tasks
like text classification [9]. The results [4] show that the effect of stemming light on the accuracy of topic-based text classification
is ineffective. Accuracy neither increases nor decreases in stemming text. The use of stemming and lemmatization also decreased
the quality of the classification model [9]. The findings of [5] revealed that stemming can reduce the computation time, as can
lemmatization. However, while faster lemmatization can speed up the process, it also negatively affects model accuracy. However,
choosing the best combination of preprocessing techniques can significantly improve classification accuracy [6]. The results of the
opposite research state that using stemming and lemmatization in text classification increases the model’s ability. The study also
showed that stemming produced the best results from the CNN model [10]. Using different machine learning models, such as Naive
Bayes, Random Forest, and BiLSTM, stemming and lemmatization also improved the accuracy of the text classification model in the

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer,
Vol. 24, No. 2, March 2025: 321 – 332

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer ❒ 323

study [7, 8]. Referring to the differences in the results of these studies, there is a curiosity to examine the impact of stemming and
lemmatization on text classification. In more detail, this study aims to determine the impact of using stemming and lemmatization in
text classification work, especially in English sentiment analysis and hate speech detection in Indonesian, and analyze when this is
needed to obtain the purpose of implementing text classification. It is hoped that with this research, future researchers can consider
stemming and lemmatization better instead of just following to use it because most of the previous researchers also used it in text
classification work.

2. RESEARCH METHOD

This research uses two datasets, namely English datasets and Indonesian datasets. The English dataset is Hotel Reviews in
Europe data taken from the Kaggle website [11]. This review data comes from user reviews on 1493 luxury hotels in Europe sourced
from Booking.com. This dataset consists of 387.848 rows for negative sentiment and 479.792 for positive sentiment. The Indonesian
dataset is taken from research that has been annotated and consulted with linguistic experts This dataset is a Tweet from social media
Twitter that contains hate speech and abusive language [12]. There are 13 columns consisting of hate speech labels, abusive language
labels, and the level and category of hate speech. In this research, only hate speech labels will be used. The dataset consists of
13.169 Tweets. A total of 7.608 Tweet rows show non-hate speech, and 5.561 that show hate speech. The flow of text classification
experiments in this study consists of several stages, as shown in Figure 1. After obtaining the dataset, the data-cleaning process
is carried out. Raw data is not always clean and contains noise, data inconsistencies, and missing values [13]. This data-cleaning
process is done to improve data quality [14]. Machine learning models are said to be of high quality if the input data to be trained
is also of high quality [15]. The cleaning process includes checking for duplicate data, and missing values, and removing irrelevant
columns [16–19].

Figure 1. Experimental design

After cleaning the data, we also checked the number of each label in the dataset. The number of labels for the English dataset
and the Indonesian dataset after the cleaning stage is shown in the graph in Figure 2 below. In Figure 2(b), label 1 represents the class
of tweets that contain hate speech, while label 0 represents the class of tweets that do not contain hate speech.

Evaluation Analysis of . . . (Ni Wayan Sumartini Saraswati)

324 ❒ ISSN: 2476-9843

(a) (b)

Figure 2. Number of labels (a) English dataset, (b) Indonesian dataset

The next step after data cleaning is text preprocessing. Text pre-processing has several stages, namely case folding, removing
punctuation, normalization (for Indonesian datasets), and word removal. Case folding in text preprocessing converts data into uniform
or lowercase. This process aims to ensure data consistency so that text containing the words ”Good” and ”good” will not be treated
differently. This will also have an impact on data accuracy. After folding the case, the text will go through the process of removing
punctuation. Text contains words and sentences, punctuation marks, emoticons, symbols, URLs, special characters, and HTML tags.
This can add noise to the text. This stage can ensure that the analysis focuses on the semantic content of the text, because punctuation
does not contain semantic information [20]. Tokenization is the process of breaking down text into tokens after removing punctuation.
It is important to make it easier for machine learning models to process text.

In Indonesian texts, especially Twitter, many users use informal language. This research performs normalization using a
slang dictionary obtained from GitHub. There are several slang dictionaries along with the formal language. This is done to clarify
meaning and standardize variations. Slang, especially in Indonesian, has many variations, such as the words ”gak,” ”ga,” and ”ngga,”
which have the same meaning, namely ”not.” The stop word removal stage is a process to remove words that are irrelevant or do
not have semantic meaning [21]. Stop words have no additional information so that they will cause noise. In addition, each word
in the text is a feature, so when the stop word removal process is carried out, it can reduce the feature dimension and prevent the
model computation from becoming heavier. This research utilizes the stop words function from the NLTK library. For Indonesian
data, use the Indonesian stop words list; for English data, use the English stop words list. The English dataset will be truncated
in this research to save computation time. This research will use 150.000 review data for each positive review and negative review
label. The amount of data used is summarized in the experimental scenario, as shown in Table 1 below. Based on the experiment
scenario table, the first experiment will implement the model for a large English dataset with a size of 300.000 reviews. The second
experiment still implements English data but with a much smaller dataset size of 5.000 reviews. The third experiment implemented
an Indonesian dataset for balanced data totaling 11.036 sentences. The fourth experiment implemented an Indonesian dataset with
an unbalanced amount of data. Furthermore, each dataset will go through a different process, and the English dataset will go through
lemmatization, stemming, and without stemming/lemmatization, while the Indonesian dataset will go through stemming and without
stemming/lemmatization.

Table 1. Experiment Scenario

Scenario Language Number of Datasets Text Pre-processing

1 English 300.000 datasets: 150.000 negative, 150.000 positive
Lemmatization

Stemming
Without Lemmatization or Stemming

2 English 5.000 datasets: 2.500 negative, 2.500 positive
Lemmatization

Stemming
Without Lemmatization or Stemming

3 Indonesian 11.036 datasets: 5.518 data of hate speech, 5.518 data not hate speech
Without Lemmatization or Stemming

Stemming

4 Indonesian 13.044 datasets: 5.518 data of hate speech, 7.526 data not hate speech
Without Lemmatization or Stemming

Stemming

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer,
Vol. 24, No. 2, March 2025: 321 – 332

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer ❒ 325

Stemming and lemmatization are two processes with the same goal: reducing words to their basic form, but they have different
approaches. Lemmatization converts words into their basic form. The base form or root form of the word in lemmatization is called
a lemma [22]. This is in contrast to stemming, which directly cuts the suffix on the word to get the base word (stem). Stemming does
not pay attention to the meaning of the word because it directly cuts the suffix and some morphological rules, so there is ambiguity
and uncertainty [7]. For example, ”runner” becomes ”run,” or ”studies” becomes ”study,” compared to lemmatization, which changes
to the root word; for example, ”running” becomes ”run,” and ”studied” becomes ”study.” Indonesian data uses stemming by utilizing
the Sastrawi library, a library for stemming in Indonesian. For English data, stemming and lemmatization are performed using the
NLTK library, namely PorterStemmer for stemming and WordNetLemmatizer for lemmatization. The results of data that has been
lemmatized, stemmed, or treated will enter the weighting stage. This stage converts text data into vector form before entering SVM
modeling. The weighting technique that this research uses is TF-IDF. TF calculates the frequency of words (term t) that often appear
in documents (d), and then for IDF, it measures the importance of a word namely, the less often the word appears, the higher the IDF
value [23]. The result of weighting is obtained from the product of TF and IDF [23]. In Equation 1, ft, d is the number of occurrences
of t in d, and Nd is the total number of words in the document. |D| is the total number of documents in corpus D, and df(t) is the
number of documents in corpus D that contain the term t. Adding 1 in Equation 2 aims to avoid division by 0 when no term appears
in any document. The feature weight value used in the vector is calculated using Equation 3.

TF (t, d) =
ft,d
Nd

(1)

IDF (t, d) = log

(
|D|

1 + df(t)

)
(2)

TFIDF (t, d,D) = TF (t, d).IDF (t,D) (3)

SVM is one of the supervised learning methods based on Structural Risk Minimization (SRM) [24], which balances the
suitability of training data with the complexity of the model. SVM has several advantages, such as good generalization and working
for high-dimensional data. SVM can handle both classification and regression cases [25]. In addition, SVM can also be used for
linear and non-linear data. SVM works by finding a hyperplane (separating function) to separate observations that have different
target values with a maximum margin represented by Equation 4, which is the largest distance between the hyperplane and support
vectors (the closest data from each class) [20]. This support vector determines the position of the hyperplane, which represents each
class in the classification as represented by equations 5 and 6. Figure 3 illustrates the concept of how the SVM works, where the
slanted separating line represents the hyperplane, the distance between the slanted line and the dashed lines represents the margin,
and the support vectors are the points located on the dashed lines. Margin is measured by the following Equation 4 [26]:

Figure 3. Maximal margin hyperplane

Evaluation Analysis of . . . (Ni Wayan Sumartini Saraswati)

326 ❒ ISSN: 2476-9843

2

||w||
(4)

Equation 4 defines w is the weight vector that determines the direction of the separating hyperplane. The term |w| represents
the norm of the weight vector, indicating the magnitude of its contribution to the margin separation. This equation describes the
maximum margin width between two classes. A larger margin implies that SVM can distinguish between the two classes more
effectively. For lines to separate the data, certain rules must be followed [26]:

(wTx+ b) ≥ +1 (5)

(wTx+ b) ≤ −1 (6)

Equation 5 represents class +1, meaning a data point in the positive class must satisfy this equation. Similarly, Equation 5
represents class -1; therefore, a data point in the negative class must satisfy it. In these equations, x represents the data point, and b is
the bias that shifts the hyperplane position. The term wT denotes the transpose of w, which means that if w is a column vector, wT

is a row vector. These equations help to define the decision boundary for classification.
The classification model that has been built needs to be evaluated. This research evaluates the model’s accuracy using several

metrics: accuracy, precision, recall, f1-score, and specificity. Accuracy shows the percentage of the model predicting correctly from
the total data. Precision shows how well the model predicts true positives from the total predicted positives [27]. Precision can
describe how well the model predicts positives for text data without incorrectly predicting negative classes as positives. Recall shows
how well the model correctly predicts positive classes. Recall identifies the number of positive classes that the model finds. While
specificity shows how well the model predicts negative classes [28]. The F1 score shows the average balance between recall and
precision. If one of the metrics between precision and recall is of poor quality, then the F1-score will also be of poor quality. This
research uses cross-validation, one of the model testing techniques, to get more stable estimates and avoid bias. Cross-validation
divides the test and training data into several splits with the parameter k. This research uses K=10, which means the model is trained
10 times with the proportion of training data and test data being 80%: 20%. The evaluation results will then be averaged so that this
technique can generalize to data that is not visible during training.

3. RESULT AND ANALYSIS
The experimental results for English and Indonesian texts are shown in Table 2 below. The experimental results show that

the highest accuracy for English data in the first scenario is the group with the treatment without stemming/lemmatization, reaching
93.166%, followed by lemmatization, reaching 93.162%, and stemming has the lowest accuracy, reaching 92.930%. In the second
scenario, treatment with lemmatization has the highest accuracy, reaching 91.075%, followed by without lemmatization/stemming,
reaching 90.900%, and stemming has the lowest accuracy, reaching 90.850%. Indonesian experiments with balanced data show
that data that goes through the stemming process using literary has a higher accuracy, reaching 82.080%, compared to the treat-
ment without stemming/lemmatization, reaching 81.887%. On imbalanced data, higher accuracy is shown by the treatment without
stemming/lemmatization, reaching 82.626% compared to stemming with Sastrawi, reaching 81.926%.

Table 2. Model Testing Results

Scenario Language Text Pre-processing Accuracy Precision Recall Specificity F1-score

1 English
Lemmatization 93.162% 93.192% 93.162% 93.161% 93.160%

Stemming 92.930% 92.959% 92.930% 92.928% 92.928%
Without Lemmatization/Stemming 93.166% 93.195% 93.166% 93.165% 93.165%

2 English
Lemmatization 91.075% 91.217% 91.075% 91.079% 91.069%

Stemming 90.850% 90.977% 90.850% 90.860% 90.845%
Without Lemmatization/Stemming 90.900% 91.033% 90.900% 90.905% 90.894%

3 Indonesian
Stemming Balance Data 82.080% 82.127% 82.080% 82.070% 82.073%

Without Lemmatization/Stemming Balance Data 81.887% 81.938% 81.887% 81.872% 81.878%

4 Indonesian
Stemming Imbalance Data 81.926% 81.933% 81.926% 80.946% 81.799%

Without Lemmatization/Stemming Imbalance Data 82.626% 82.659% 82.626% 81.638% 82.495%

Why English stemming gives the worst results can be due to several reasons, including loss of context, i.e., stemming can
sometimes oversimplify, leading to a loss of nuance. For example, ”better” can be incorrectly stemmed into ”bet,” Language-Specific

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer,
Vol. 24, No. 2, March 2025: 321 – 332

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer ❒ 327

Rules, where the stemming algorithm may not work well for all languages, and Accuracy Tradeoff, where aggressive stemming can
group words with different meanings under the same root word, thus affecting classification accuracy.

Why lemmatization performs worse on large datasets can be explained as follows. In large datasets, different word forms
(such as run, running, ran) usually occur quite frequently, allowing the model to learn the relationship between these word forms.
Lemmatization unifies all word forms into a root (lemma), reducing this variation, so the model loses features that are actually
informative. Example: ”The system is running smoothly” and ’The system ran smoothly’ will be simplified to the same form,
despite the different time context and nuances where the first sentence can be positive and the second sentence can be negative.
In small datasets, lemmatization helps by reducing sparsity in the data. However, in large datasets, the variety of word forms is
usually represented quite well; sufficient word frequency helps the model understand the relationship between different word forms
without simplifying them. As a result, lemmatization no longer provides significant benefits. In small datasets, word form variation
(e.g., run, running, ran) can cause the distribution of features to be sparse, which makes it difficult for the model to find relevant
patterns. Lemmatization unifies these variations into a basic form (run), reduces the number of unique features, and helps the
model work more effectively with limited data. Lemmatization is more useful for small datasets as it helps reduce sparsity, increase
generalization, and maximize the available information. In large datasets, the variety of word forms is usually already adequately
represented, so lemmatization provides less benefit or is even unnecessary. In the third scenario, stemming in Indonesia with balanced
data gets higher evaluation results than without stemming/lemmatization for several reasons. Although both are stemming techniques,
stemming specifically designed for Indonesian text cuts not only suffixes but also prefixes, infixes, suffixes, and combined affixes.

Given that Indonesian has a more complex morphology, a variety of vocabulary, and a level of ambiguity, it has challenges
different from English. The feature dimension when using stemming is reduced, thus reducing model complexity and redundancy.
Stemming also reduces sparsity in text representation to make it denser and more informative. Indonesian still has few annotation
datasets, so stemming helps maximize information by ensuring that each word is effectively represented. Removing affixes in In-
donesian datasets can reduce noise in the data. In text classification, stemming reduces overfitting; i.e., in a small corpus, unnecessary
word variations can cause the model to focus too much on irrelevant details. Here, stemming helps simplify the data to make the
model more robust. Indonesian words with similar meanings but different forms are mapped to the same root word. This leads to
a more consistent text representation for the classification model. Better generalization of the model to unseen data can occur with
stemming, as it maps the different word forms of words to the root word, allowing the model to recognize patterns more effectively.
The imbalanced data shows that the dataset without stemming/lemmatization has a higher classification performance than the dataset
using stemming. This is due to several reasons. In imbalanced datasets, minority classes often have specific and unique word or
phrase patterns. Stemming simplifies words to their base form and can remove these nuances, resulting in important features repre-
senting the minority class being underrepresented. Stemming also often removes word variations that are important for recognizing
the specific patterns of minority classes. This can exacerbate the imbalance as the minority class loses its distinctive features that help
the model distinguish them from the majority. As a result, the model loses the ability to recognize specific patterns in the minority
data, which is important for correcting imbalance. The model has more features to learn by retaining the original word form. The
model’s unit of measurement also reinforces this. If based on specificity, both stemming and without stemming/lemmatization are
less able to recognize negative or minority classes. In addition, the higher F1- score shows that the balance between precision and
recall is better. This indicates that recall and precision are higher because the model focuses on recognizing more majority classes.

A comparison between the results of this study and similar previous research, such as [4], indicates that the presence or absence
of stemming does not significantly impact classification performance. The results remained consistent, showing neither an increase
nor a decrease, regardless of whether stemming was applied. There was a high level of consistency between the six main groups
identified by hierarchical clustering analysis and those identified through SOM. Despite minor differences, the results obtained from
hierarchical clustering were aligned with those obtained from the SOM. In [4], a light stemmer (UEA stemmer) was used, which
preserves lexical meaning after stemming. In contrast, this study found that stemming resulted in lower accuracy in both the first
(92.930%) and second scenarios (90.850%). This discrepancy may be attributed to the use of PorterStemmer, which applies a more
aggressive stemming approach that reduces words to their root forms. Meanwhile, [6] categorized the classification results based on
the best and worst preprocessing combinations across three datasets: 25.112 (David et al. dataset), 19.968 (Golbeck et al. dataset), and
15.844 (Wassem et al. dataset). The best-performing preprocessing techniques, measured by the F1-score, were lemmatization and
lowercasing of words. Among them, lemmatization achieved the highest evaluation scores in most classification cases, particularly
on the David et al. dataset, with the highest F1-score of 0.671 using CNN classification. These findings align with this study’s, where
lemmatization outperformed stemming in the second scenario, especially for smaller datasets achieving an F1-score of 91.069%.

Based on the computation time of the model, as shown in Table 3, the model with stemming provides the best computation
time performance of the four experimental scenarios. In the case of large English datasets, using lemmatization gives worse compu-
tation time performance than datasets without stemming or lemmatization. However, on smaller datasets, lemmatization gives better

Evaluation Analysis of . . . (Ni Wayan Sumartini Saraswati)

328 ❒ ISSN: 2476-9843

computation time performance.

Table 3. Model Computation Time

Scenario Language Text Pre-processing Model Computation Time

1 English
Lemmatization 5 hours 10 minutes 25.2 seconds

Stemming 4 hours, 51 minutes, and 41.3 seconds.
Without Lemmatization/Stemming 4 hours, 56 minutes, and 8.9 seconds

2 English
Lemmatization 4.7 seconds

Stemming 4.5 seconds
Without Lemmatization/Stemming 5 seconds

3 Indonesian
Stemming Balance Data 32.6 seconds

Without Lemmatization/Stemming Balance Data 34.4 seconds

4 Indonesian
Stemming Imbalance Data 42.6 seconds

Without Lemmatization/Stemming Imbalance Data 47.3 seconds

Based on the concept of stemming that converts words into their basic form, the dimension of TFIDF features is reduced,
so the complexity of the SVM model is also reduced. That is the reason why the computation time of the model using stemming
is the most efficient. Why models with lemmatization on large datasets have worse computation time than models without stem-
ming/lemmatization can be explained as follows. TF-IDF vectors are often sparse because most documents only contain a small
portion of the overall vocabulary. This sparsity can help speed up computation in SVM implementation. The computation time can
be optimized if the feature vector is sparse (many elements are zero). Lemmatization can reduce sparsity by combining similar word
forms (e.g., ”running” and ”run”), but the effect on large datasets may not be significant. Although lemmatization can reduce the
vocabulary size, this reduction is often small compared to the initial vocabulary size on large datasets. Therefore, the time saved on
the SVM model may not be enough to offset the overhead of lemmatization. SVM is designed to work well on sparse data, such as
TF-IDF representations. Without lemmatization, the data representation may be sparse but still efficient when processed by the SVM
algorithm. Lemmatization, by reducing sparsity, can increase data density, which increases computation time for kernel operations or
dot products. The second reason is that lemmatization can potentially increase the term frequency weight in vector data; TF weight
in TF-IDF is a numerical component that reflects the frequency of word occurrence in documents. The size of this weight can affect
numerical stability when SVM performs optimization, especially if the weight is not normalized. In SVM, a kernel (e.g., linear or
RBF) calculates the similarity between data pairs. If the TF-IDF vector has large values or is not well distributed (e.g., without
normalization), the kernel computation becomes more expensive as it involves more complex numerical operations. Compared to
previous research by [5] the findings of this study indicate that stemming can reduce the computation time. The previous study com-
pared the computation times for the K-Means, Agglomerative Hierarchical Clustering, and HDBSCAN algorithms using various text
representation techniques: BOW, TF-IDF, and BERT. By comparing lemmatization, stemming, and the original text (without stem-
ming and lemmatization), it was found that stemming resulted in the shortest computation time, except for the stemming + BERT
combination in Agglomerative Hierarchical Clustering. Specifically, the computation times for K-Means with stemming + TF-IDF,
stemming + BOW, and stemming + BERT were 6.246 seconds, 8.558 seconds, and 385.74 seconds, respectively. For Agglomerative
Hierarchical Clustering, the times were 93.66 seconds, 97.14 seconds, and 472.98 seconds, while for HDBSCAN, the computation
times reached 378.89 seconds, 378.09 seconds, and 442.50 seconds, respectively. The findings of this study consistently demonstrate
that stemming reduces the model complexity. This is due to the fact that the model learns from a smaller number of features, leading
to faster computation times.

4. CONCLUSION
The use of stemming gives worse performance compared to treatment without stemming on English datasets because the

aggressiveness of stemming can convert words with different meanings into the same form, causing sentences to lose context and
experience accuracy tradeoffs. This is also due to language-specific rules in English. Lemmatization supports the performance
of classification models on small data but not on large data. Lemmatization is more useful for small datasets because it helps
reduce sparsity, increase generalization, and maximize the available information. The variety of word forms in large datasets is
usually adequately represented, so lemmatization provides less or no benefit. In unbalanced datasets, minority classes often have
specific and unique patterns of words or phrases. Stemming simplifies words to their base form, which can remove these nuances,
resulting in important features representing minority classes being underrepresented. Stemming also often removes word variations
that are important for recognizing the specific patterns of the minority class. Thus, stemming gives worse performance to text

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer,
Vol. 24, No. 2, March 2025: 321 – 332

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer ❒ 329

classification models on unbalanced datasets. Lemmatization on large datasets has worse computation time than models without
stemming/lemmatization because lemmatization can reduce sparsity and potentially increase the weight of term frequency in vector
data, which can increase the computational complexity of support vector machine models. Future research could consider using deep
learning models, such as BERT, to analyze the impact of lemmatization and stemming on model performance. Additionally, data
imbalance handling techniques such as the Synthetic Minority Oversampling Technique (SMOTE) can be applied to improve the
model accuracy for minority classes.

5. ACKNOWLEDGEMENTS
We would like to express our deepest gratitude to all parties involved in this research for their valuable contributions and

support. We are especially grateful to the reviewers for their insightful comments and suggestions, which have greatly improved the
quality and presentation of this manuscript.

6. DECLARATIONS
AUTHOR CONTIBUTION

We thank Author 1 for formulating the problem, defining the research objectives, developing the model, and conducting the analysis
in this study. We also extend our gratitude to Author 2 for reviewing previous research. Furthermore, we appreciate Authors 3 and 4
for testing the model in this research.

FUNDING STATEMENT
This research did not receive any funding.

COMPETING INTEREST
There is no competing interest in this research.

REFERENCES
[1] Z. Abidin, A. Junaidi, and Wamiliana, “Text Stemming and Lemmatization of Regional Languages in Indonesia: A Systematic

Literature Review,” vol. 10, no. 2, pp. 217–231, 2024, https://doi.org/10.20473/jisebi.10.2.217-231. [Online]. Available:
https://e-journal.unair.ac.id/JISEBI/article/view/50341

[2] Q. Li, H. Peng, J. Li, C. Xia, R. Yang, L. Sun, P. S. Yu, and L. He, “A Survey on Text Classification: From
Traditional to Deep Learning,” vol. 13, no. 2, pp. 1–41, 2022, https://doi.org/10.1145/3495162. [Online]. Available:
https://dl.acm.org/doi/10.1145/3495162

[3] M. M. Rahman, A. I. Shiplu, and Y. Watanobe, “CommentClass: A Robust Ensemble Machine Learning Model for
Comment Classification,” vol. 17, no. 1, pp. 1–20, 2024, https://doi.org/10.1007/s44196-024-00589-3. [Online]. Available:
https://link.springer.com/10.1007/s44196-024-00589-3

[4] R. Ahmed, “Exploring The Impact of Stemming on Text Topic-Based Classification Accuracy,” vol. 2, no. 2, pp. 204–224,
2024, https://doi.org/10.61320/jolcc.v2i2.204-224. [Online]. Available: https://jolcc.org/index.php/jolcc/article/view/51

[5] Lviv Polytechnic National University, Lviv, 79013, Ukraine, O. Prokipchuk, V. Vysotska, P. Pukach, V. Lytvyn, D. Uhryn,
Y. Ushenko, and Z. Hu, “Intelligent Analysis of Ukrainian-language Tweets for Public Opinion Research based on NLP
Methods and Machine Learning Technology,” vol. 15, no. 3, pp. 70–93, 2023, https://doi.org/10.5815/ijmecs.2023.03.06.
[Online]. Available: http://mecs-press.org/ijmecs/ijmecs-v15-n3/v15n3-6.html

[6] U. Naseem, I. Razzak, and P. W. Eklund, “A survey of pre-processing techniques to improve short-text quality: A case study on
hate speech detection on twitter,” vol. 80, no. 28–29, pp. 35 239–35 266, 2021, https://doi.org/10.1007/s11042-020-10082-6.
[Online]. Available: https://link.springer.com/10.1007/s11042-020-10082-6

[7] G. Imin, M. Ablimit, H. Yilahun, and A. Hamdulla, “A Character String-Based Stemming for Morphologically
Derivative Languages,” vol. 13, no. 4, pp. 1–16, 2022, https://doi.org/10.3390/info13040170. [Online]. Available:
https://www.mdpi.com/2078-2489/13/4/170

Evaluation Analysis of . . . (Ni Wayan Sumartini Saraswati)

https://doi.org/10.20473/jisebi.10.2.217-231
https://e-journal.unair.ac.id/JISEBI/article/view/50341
https://doi.org/10.1145/3495162
https://dl.acm.org/doi/10.1145/3495162
https://doi.org/10.1007/s44196-024-00589-3
https://link.springer.com/10.1007/s44196-024-00589-3
https://doi.org/10.61320/jolcc.v2i2.204-224
https://jolcc.org/index.php/jolcc/article/view/51
https://doi.org/10.5815/ijmecs.2023.03.06
http://mecs-press.org/ijmecs/ijmecs-v15-n3/v15n3-6.html
https://doi.org/10.1007/s11042-020-10082-6
https://link.springer.com/10.1007/s11042-020-10082-6
https://doi.org/10.3390/info13040170
https://www.mdpi.com/2078-2489/13/4/170

330 ❒ ISSN: 2476-9843

[8] J. K. Mursi, P. R. Subramaniam, and I. Govender, “Exploring the Influence of Pre-Processing Techniques in Obtaining
Labelled Data from Twitter Data,” in 2023 IEEE AFRICON. IEEE, 2023, pp. 1–6, https://doi.org/10.1109/AFRICON55910.
2023.10293408. [Online]. Available: https://ieeexplore.ieee.org/document/10293408/

[9] S. F. Chaerul Haviana, S. Mulyono, and Badie’Ah, “The Effects of Stopwords, Stemming, and Lemmatization on Pre-trained
Language Models for Text Classification: A Technical Study,” in 2023 10th International Conference on Electrical Engineering,
Computer Science and Informatics (EECSI), 2023, pp. 521–527.

[10] M. Siino, I. Tinnirello, and M. La Cascia, “Is text preprocessing still worth the time? A comparative survey on the
influence of popular preprocessing methods on Transformers and traditional classifiers,” vol. 121, March, pp. 1–19, 2024,
https://doi.org/10.1016/j.is.2023.102342. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0306437923001783

[11] J. Liu, “515K Hotel Reviews Data in Europe,” https://www.kaggle.com/datasets/jiashenliu/515k-hotel-reviews-data-in-europe/
data.

[12] M. O. Ibrohim and I. Budi, “Multi-label Hate Speech and Abusive Language Detection in Indonesian Twitter,” in Proceedings
of the Third Workshop on Abusive Language Online, S. T. Roberts, J. Tetreault, V. Prabhakaran, and Z. Waseem, Eds.
Association for Computational Linguistics, 2019, pp. 46–57, https://doi.org/10.18653/v1/W19-3506. [Online]. Available:
https://aclanthology.org/W19-3506/

[13] K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data augmentation techniques,” vol. 3, no. 1,
pp. 91–99, 2022, https://doi.org/10.1016/j.gltp.2022.04.020. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S2666285X22000565

[14] F. Neutatz, B. Chen, Y. Alkhatib, J. Ye, and Z. Abedjan, “Data Cleaning and AutoML: Would an Optimizer
Choose to Clean?” vol. 22, no. 2, pp. 121–130, 2022, https://doi.org/10.1007/s13222-022-00413-2. [Online]. Available:
https://link.springer.com/10.1007/s13222-022-00413-2

[15] P. Li, X. Rao, J. Blase, Y. Zhang, X. Chu, and C. Zhang, “CleanML: A Study for Evaluating the Impact of Data Cleaning
on ML Classification Tasks,” in 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE, 2021, pp.
13–24, https://doi.org/10.1109/ICDE51399.2021.00009. [Online]. Available: https://ieeexplore.ieee.org/document/9458702/

[16] N. W. S. Saraswati, I. K. G. D. Putra, M. Sudarma, I. M. Sukarsa, C. P. Yanti, and N. K. Tri Juniartini, “Revealing
the Potential of Hotel Improvements in Bali Based on Sentiment Analysis and Tourist Characteristics,” in 2024 11th
International Conference on Electrical Engineering, Computer Science and Informatics (EECSI). IEEE, 2024, pp. 722–728,
https://doi.org/10.1109/EECSI63442.2024.10776092. [Online]. Available: https://ieeexplore.ieee.org/document/10776092/

[17] N. W. S. Saraswati, I. D. M. K. Muku, I. W. D. Suryawan, D. A. K. Pramita, and I. K. A. Bisena, “Balinese
Temple: The Image and Characteristics of Tourists based on Sentiment Analysis,” in 2024 IEEE International Symposium
on Consumer Technology (ISCT). IEEE, 2024, pp. 19–24, https://doi.org/10.1109/ISCT62336.2024.10791104. [Online].
Available: https://ieeexplore.ieee.org/document/10791104/

[18] N. W. S. Saraswati, I. Ketut Gede Darma Putra, M. Sudarma, and I. Made Sukarsa, “Enhance sentiment analysis in big data
tourism using hybrid lexicon and active learning support vector machine,” vol. 13, no. 5, pp. 3663–3674, 2024.

[19] N. W. S. Saraswati, I. K. G. D. Putra, M. Sudarma, and I. M. Sukarsa, “The Image of Tourist Attraction in Bali Based
on Big Data Analytics and Sentiment Analysis,” in 2023 International Conference on Smart-Green Technology in Electrical
and Information Systems (ICSGTEIS). IEEE, 2023, pp. 82–87, https://doi.org/10.1109/ICSGTEIS60500.2023.10424322.
[Online]. Available: https://ieeexplore.ieee.org/document/10424322/

[20] C. Xu, P. Coen-Pirani, and X. Jiang, “Empirical Study of Overfitting in Deep Learning for Predicting Breast
Cancer Metastasis,” vol. 15, no. 7, pp. 1–18, 2023, https://doi.org/10.3390/cancers15071969. [Online]. Available:
https://www.mdpi.com/2072-6694/15/7/1969

[21] A. Habberrih and M. Ali Abuzaraida, “Sentiment Analysis of Libyan Dialect Using Machine Learning with Stemming
and Stop-words Removal,” in 5th International Conference on Communication Engineering and Computer Science
(CIC-COCOS’24). Cihan University-Erbil, 2024, pp. 259–264, https://doi.org/10.24086/cocos2024/paper.1171. [Online].
Available: https://conferences.cihanuniversity.edu.iq/index.php/COCOS/COCOS24/paper/view/1171

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer,
Vol. 24, No. 2, March 2025: 321 – 332

https://doi.org/10.1109/AFRICON55910.2023.10293408
https://doi.org/10.1109/AFRICON55910.2023.10293408
https://ieeexplore.ieee.org/document/10293408/
https://doi.org/10.1016/j.is.2023.102342
https://linkinghub.elsevier.com/retrieve/pii/S0306437923001783
https://www.kaggle.com/datasets/jiashenliu/515k-hotel-reviews-data-in-europe/data
https://www.kaggle.com/datasets/jiashenliu/515k-hotel-reviews-data-in-europe/data
https://doi.org/10.18653/v1/W19-3506
https://aclanthology.org/W19-3506/
https://doi.org/10.1016/j.gltp.2022.04.020
https://linkinghub.elsevier.com/retrieve/pii/S2666285X22000565
https://linkinghub.elsevier.com/retrieve/pii/S2666285X22000565
https://doi.org/10.1007/s13222-022-00413-2
https://link.springer.com/10.1007/s13222-022-00413-2
https://doi.org/10.1109/ICDE51399.2021.00009
https://ieeexplore.ieee.org/document/9458702/
https://doi.org/10.1109/EECSI63442.2024.10776092
https://ieeexplore.ieee.org/document/10776092/
https://doi.org/10.1109/ISCT62336.2024.10791104
https://ieeexplore.ieee.org/document/10791104/
https://doi.org/10.1109/ICSGTEIS60500.2023.10424322
https://ieeexplore.ieee.org/document/10424322/
https://doi.org/10.3390/cancers15071969
https://www.mdpi.com/2072-6694/15/7/1969
https://doi.org/10.24086/cocos2024/paper.1171
https://conferences.cihanuniversity.edu.iq/index.php/COCOS/COCOS24/paper/view/1171

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer ❒ 331

[22] S. Shaukat, M. Asad, and A. Akram, “Developing an Urdu Lemmatizer Using a Dictionary-Based Lookup Approach,” vol. 13,
no. 8, p. 5103, 2023, https://doi.org/10.3390/app13085103. [Online]. Available: https://www.mdpi.com/2076-3417/13/8/5103

[23] A. R. Lubis, M. K. M. Nasution, O. S. Sitompul, and E. M. Zamzami, “The effect of the TF-IDF algorithm in times series
in forecasting word on social media,” vol. 22, no. 2, p. 976, 2021, https://doi.org/10.11591/ijeecs.v22.i2.pp976-984. [Online].
Available: http://ijeecs.iaescore.com/index.php/IJEECS/article/view/24885

[24] N. M. Guerrero, J. Aparicio, and D. Valero-Carreras, “Combining Data Envelopment Analysis and Machine Learning,” vol. 10,
no. 6, p. 909, 2022, https://doi.org/10.3390/math10060909. [Online]. Available: https://www.mdpi.com/2227-7390/10/6/909

[25] J. M. Álvarez Alvarado, J. G. Rı́os-Moreno, S. A. Obregón-Biosca, G. Ronquillo-Lomelı́, E. Ventura-Ramos, and
M. Trejo-Perea, “Hybrid Techniques to Predict Solar Radiation Using Support Vector Machine and Search Optimization
Algorithms: A Review,” vol. 11, no. 3, pp. 1–17, 2021, https://doi.org/10.3390/app11031044. [Online]. Available:
https://www.mdpi.com/2076-3417/11/3/1044

[26] F. Nie, Z. Hao, and R. Wang, “Multi-Class Support Vector Machine with Maximizing Minimum Margin,”
vol. 38, no. 13, pp. 14 466–14 473, 2024, https://doi.org/10.1609/aaai.v38i13.29361. [Online]. Available: https:
//ojs.aaai.org/index.php/AAAI/article/view/29361

[27] R. Wang, J. Zhang, Y. Lu, S. Ren, and J. Huang, “Towards a Reliable Design of Geopolymer Concrete for Green
Landscapes: A Comparative Study of Tree-Based and Regression-Based Models,” vol. 14, no. 3, p. 615, 2024,
https://doi.org/10.3390/buildings14030615. [Online]. Available: https://www.mdpi.com/2075-5309/14/3/615

[28] A. Stanzione, R. Cuocolo, L. Ugga, F. Verde, V. Romeo, A. Brunetti, and S. Maurea, “Oncologic Imaging and Radiomics: A
Walkthrough Review of Methodological Challenges,” vol. 14, no. 19, p. 4871, 2022, https://doi.org/10.3390/cancers14194871.
[Online]. Available: https://www.mdpi.com/2072-6694/14/19/4871

Evaluation Analysis of . . . (Ni Wayan Sumartini Saraswati)

https://doi.org/10.3390/app13085103
https://www.mdpi.com/2076-3417/13/8/5103
https://doi.org/10.11591/ijeecs.v22.i2.pp976-984
http://ijeecs.iaescore.com/index.php/IJEECS/article/view/24885
https://doi.org/10.3390/math10060909
https://www.mdpi.com/2227-7390/10/6/909
https://doi.org/10.3390/app11031044
https://www.mdpi.com/2076-3417/11/3/1044
https://doi.org/10.1609/aaai.v38i13.29361
https://ojs.aaai.org/index.php/AAAI/article/view/29361
https://ojs.aaai.org/index.php/AAAI/article/view/29361
https://doi.org/10.3390/buildings14030615
https://www.mdpi.com/2075-5309/14/3/615
https://doi.org/10.3390/cancers14194871
https://www.mdpi.com/2072-6694/14/19/4871

332 ❒ ISSN: 2476-9843

[This page intentionally left blank.]

Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer,
Vol. 24, No. 2, March 2025: 321 – 332

	INTRODUCTION
	RESEARCH METHOD
	RESULT AND ANALYSIS
	CONCLUSION
	ACKNOWLEDGEMENTS
	DECLARATIONS

