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ABSTRACT

Concept maps are educational tools for organizing and representing knowledge, enhancing compre-
hension, and memory retention. In concept map construction, much knowledge can be utilized. Still,
concept map construction is complex, involving actions that reflect a user’s thinking and problem-
solving strategies. Traditional methods struggle to analyze large datasets and capture temporal de-
pendencies in these actions. To address this, the study applies deep learning and machine learning
techniques. This research aims to evaluate and compare the performance of Long Short-Term Mem-
ory (LSTM), K-Nearest Neighbors (K-NN), and Random Forest algorithms in predicting user actions
and uncovering user interaction patterns in concept map construction. This research method collects
and analyzes interaction logs data from concept map activities, using these three models for evaluation
and comparison. The results of this research are that LSTM achieved the highest accuracy (83.91%)
due to its capacity to model temporal dependencies. Random Forest accuracy (80.53%), excelling in
structured data scenarios. K-NN offered the fastest performance due to its simplicity, though its re-
liance on distance-based metrics limited accuracy (70.53%). In conclusion, these findings underscore
the practical considerations in selecting models for concept map applications; LSTM demonstrates
effectiveness in predicting user actions and excels for temporal tasks, while Random Forest and K-NN
offer more efficient alternatives in computational.
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1. INTRODUCTION
A concept map is a graphical tool that serves to organize and represent one’s knowledge and has been used in various dis-

ciplines for learning, teaching, and assessing learning outcomes [1]. Concept maps provide an interactive method for visualizing
and organizing knowledge, connecting concepts through nodes and links that reflect meaningful relationships [2] and provides a
visual representation of a person’s comprehension of a given subject [3]. This structured format aids comprehension and memory
retention by encouraging learners to engage with content actively, constructing and reconstructing ideas in a format that emphasizes
connections. Concept maps are composed of three main parts: nodes that contain a concept, lines that connect one node to another,
and phrases as labels that describe the relationship between nodes [4]. Two nodes connected with a labeled connecting line are
called propositions. As the smallest part of a concept map, the proposition determines the quality of knowledge understood by each
individual because each proposition will represent its meaning in a concept map. As learners interact with these maps, their behav-
iors, such as adding new nodes, forming links between concepts, and restructuring content, generate unique interaction patterns [5].
Concept maps can be made in two fundamental ways: closed-ended and open-ended [6]. In open-ended concept maps, people can
create and add their concepts and associations to an open-ended concept map without any restrictions or preset framework. Because
students can build the concept map according to their understanding and insights, this method fosters creativity and flexibility [7].
Conversely, creating a closed-ended concept map adheres to a predetermined framework or template that includes particular concepts
and connections. This approach offers a more directed and organized learning process, emphasizing particular ideas and connections
that the teacher or curriculum determines are crucial [8].

In recent years, Machine learning (ML) and deep learning (DL) techniques have become fundamental to educational tech-
nology [9, 10], it offers the potential to analyze data, identify user behavior patterns, and make predictive adjustments that enhance
personalization and user experience. User interaction data is a valuable resource in understanding and predicting user behavior, par-
ticularly in educational tools such as concept map applications [11]. Recognizing and predicting user interaction patterns in these
applications can provide valuable insights, from enhancing personalized learning experiences to automating feedback and support
systems. Traditional methods of analyzing these processes are often limited by their inability to handle large datasets or capture the
temporal dependencies in the sequence of actions. This research addresses these challenges by applying machine learning and deep
learning techniques K-Nearest Neighbors (K-NN), Random Forest, and Long Short-Term Memory (LSTM) to predict user actions
and reveal hidden patterns in constructing concept maps. One supervised machine-learning approach that is primarily utilized for
classification is the traditional K-NN algorithm [12]. The number of ”nearest neighbors,” or k, is a changeable parameter in the pro-
cedure. Finding the closest data point or neighbors from a training dataset for a query is how the K-NN algorithm works. The closest
distances from the query point are used to determine which data points are closest [13]. On the other hand, a random forest algorithm
is a nonlinear model that combines several decision trees into a forest is the random forest algorithm [14]. Random sampling and
majority voting are crucial concepts to remember when analyzing random forests. In particular, the training set for every decision tree
is chosen at random from the complete sample set [15]. For the DL, one of the most popular models for time series prediction is the
LSTM model [16]. The bidirectional LSTM model can also be used to predict user interaction patterns because it clearly outperforms
the LSTM in considering both past and future information.

Among these, K-NN, Random Forest, and LSTM represent diverse approaches in data processing, each bringing unique ad-
vantages for recognizing patterns and making accurate predictions. That is why this study used these 3 models. LSTM networks,
as sequential models, are well-suited for analyzing temporal user interactions due to their ability to capture long-term dependencies
and patterns over time [17]. K-NN, on the other hand, is a simpler yet powerful, proximity-based model that identifies patterns by
calculating similarity among data points [18]. Meanwhile, Random Forest, a robust ensemble method built on multiple decision
trees, offers strength in handling complex, high-dimensional data with high predictive accuracy [19]. Exploring the application of
these models within the specific domain of interactive concept map construction can reveal insights that lead to more adaptive and
responsive learning systems. While individual learning models like LSTM, K-NN, and Random Forest have been widely used for
classification and prediction tasks, their specific applications in predicting user actions and uncovering interaction patterns during
concept map construction remain underexplored. Existing studies often focus on traditional educational analytics or single-model ap-
proaches but lack a comprehensive comparison of these models in the context of temporal sequence analysis (e.g., LSTM) [20] versus
instance-based learning (K-NN) [21] and ensemble learning (Random Forest) [22]. Moreover, there is limited work analyzing how
these models can synergistically provide insights into interaction dynamics, offering actionable feedback for personalized learning
systems or collaborative tools. This creates an opportunity to compare model performance in predicting user behavior and extracting
interaction patterns. Investigate the unique strengths and weaknesses of these algorithms in handling diverse datasets. This research
addresses these gaps by evaluating the models in-depth and connecting their outputs to meaningful interpretations for concept map
applications.
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This study presents a comparative analysis of LSTM, K-NN, and Random Forest models for recognizing user interaction
patterns and predicting future actions within concept map construction. For instance, LSTM’s strength in sequential data processing
may make it better suited for detecting gradual changes in user behavior [23]. Random Forest’s versatility with structured data could
make it effective for identifying specific decision-making patterns [24]. Meanwhile, K-NN’s proximity-driven metrics provide a
straightforward method for analyzing local patterns in interaction data. This analysis not only identifies the strengths and weaknesses
of each model in educational contexts but also highlights the discovery of patterns in user interaction. By evaluating these models
on metrics such as accuracy, precision, recall, and computational efficiency, the aim is to identify the strengths and limitations of
each approach [25]. This research contributes to advancing intelligent systems for educational applications, with implications for
improving adaptive learning environments and enhancing user engagement in concept map-based platforms. The importance of this
research extends beyond technical evaluation; it contributes to the broader goal of advancing adaptive educational technologies that
respond to individual learning needs. The findings from this study could inform the design of learning systems that offer data-
driven personalization, adapting to users’ activity in building concept maps as they navigate learning materials. This study builds on
existing state-of-the-art research in ML-DL-based adaptive learning, pushing the boundaries of what is possible with user-centered
educational tools. By systematically comparing LSTM, K-NN, and Random Forest, the research aims to equip developers, educators,
and researchers with insights that can shape the next generation of intelligent, intuitive, and effective educational data. Ultimately,
this work seeks to transform the concept map into a predictive, interactive learning tool, where technology supports the learner’s
journey by recognizing and adapting to their unique path toward knowledge.

2. RESEARCH METHOD
The methodology of this study is divided into several stages, including data collection, data preprocessing, data splitting,

model development, and evaluation [26] for each phase can be seen in figure 1. Each phase is described in detail below to provide
a comprehensive understanding of the approach taken to analyze user interaction patterns and predict actions within the context of
concept map construction.

Figure 1. Workflow of the research

2.1. Data Collection
Data collection is the foundational phase where relevant interaction data from users constructing concept maps is gathered

[27]. The taken from the datalog of concept map creation by several students in several classes (SQL and database). This include
actions such as concept creation, link formation, and modification of content, which collectively represent each user’s engagement
and behavioral patterns within the concept map environment. The data for this study was gathered from a logging system that
recorded users’ actions while creating concept maps. The dataset included interaction logs collected from concept map construction
activities focused on two materials: relational database and SQL. It consists of 7133 rows of data on database relational material
and 8061 rows of data on SQL material. These materials are used because they are structured, allowing for consistent data patterns
suitable for predictive modeling. The log data captured multiple aspects of user interactions, such as id, date and time, component
creation, action taken, component manufacturing coordinates, along with timestamps and sequence information. This data served as
the foundation for analyzing and recognizing patterns in how users construct concept maps over time. Raw data and its attribute’s
descriptions as shown in Table 1 and 2.

Revealing Interaction Patterns . . . (F.ti Ayyu Sayyidul Laily)



210 ❒ ISSN: 2476-9843

Table 1. Sample of Raw Data

Raw Data
id date time uid comp type comp id action locx locy

25653 11/02/19 8:18:17 658 0 0 0 100 -35
25654 11/02/19 8:18:17 658 0 0 1 542 -283
25655 11/02/19 8:18:20 658 0 0 0 542 -283
25656 11/02/19 8:18:20 658 0 0 1 524 -289
25657 11/02/19 8:18:39 658 1 0 0 300 -35
25658 11/02/19 8:18:39 658 1 0 1 705 -289

Table 2. Description of Atribut

Field Name Data Type Description
id int A unique identity that becomes the primary key. Formed every time a user performs an action in concept

map creation. IDs are sorted in time order.
date date the time (date) of each action taken by the user during concept map creation.
time time timestamp of each action taken by the user during concept map creation.
uid int User ID in concept map creation.

component type int The components in a concept map are divided into three categories: Concept, denoted by number 0; Link,
denoted by number 1; and Connector, denoted by number 2.

component id int ID of each component created by the user during concept map creation.
action int Each action taken by the user when creating a concept map is divided into 4 categories: Click is denoted by

number 0, Move is denoted by number 1, Connect is denoted by number 2, and Disconnect is denoted by
number 3.

locx float Location of user action on the X-axis
locy float Location of user action on the Y-axis

2.2. Data Pre-processing
To ensure the quality and consistency of the data, several preprocessing steps were applied: (1) Data Cleaning: This step

involved identifying and removing incomplete, irrelevant, or erroneous records [28]. For instance, logs with missing timestamps
or invalid actions (e.g., missing value, unrecorded actions and unnecessary column) were removed to ensure the dataset’s integrity;
(2) Normalization: To prepare the data for effective machine learning, normalization was applied to numeric features, locx and locy
attributes normalized using minmax scaller. This process ensured that all features contributed equally to the model without being
biased by their scale [29]; (3) Transformation: Temporal sequences in user interactions were transformed to a structured format that
could be utilized effectively by the machine learning models [30]. Specifically, sequential user actions were transformed into time-
series data for the LSTM model, it convert data into sequential form to allow the LSTM model to learn sequential patterns and actions
were encoded into numerical representations such as one-hot encoding, so that the labels are suitable for multi-class classification
[31]. while converts data into a sequential format, were prepared for K-NN and Random Forest. For the random forest forming the
data sequence into a one-dimensional vector so that the random forest model can use it as a feature.

2.3. Data Spliting
The preprocessed dataset was divided into training and testing sets to evaluate model performance. A standard 80:20 split

was used, with 80% of the data allocated for training and 20% for testing [32]. The training set was used to build the models,
while the testing set was reserved for final evaluation to ensure an unbiased assessment of model accuracy [33]. Stratified sampling
was employed to maintain the distribution of actions in both the training and testing sets, ensuring that all action types were well-
represented and the model’s performance could be generalized across various user behaviors.

2.4. Modeling
For both treatments, action prediction and uncovering user interaction pattern three model algorithms were selected for the

task:
1. K-NN is a simple, distance-based classification algorithm that predicts user actions by identifying the most similar interaction

patterns in the training dataset [34]. It was chosen for its simplicity and interpretability, though its performance can be affected
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by the scale of the data and the presence of noise. In this implementation, a K-Nearest Neighbors model with n neighbors=3
is instantiated. The value of k=3 was likely chosen experimentally, balancing bias and variance [35]. Generally, a lower K can
make the model more sensitive to local variations, which may improve classification performance in scenarios with distinct,
localized patterns. The distance used in the K-NN algorithm is usually the Euclidean distance. The formula is shown in
Equation 1. Where, p and q are two points in an n-dimensional space, p i and q i are coordinates of p and q along the i-th
dimension, and d (p,q) represents the Euclidean distance between p and q.

d(p, q) =

√√√√ n∑
i=1

(pi − qi)2 (1)

2. Random Forest is an ensemble learning method that builds multiple decision trees and combines their predictions to achieve
robust results. It was selected due to its effectiveness in handling complex, non-linear data and its resistance to overfitting [36].
Random Forest’s capability of identifying important features also provided insights into which aspects of user interactions were
most influential in predicting actions. In this implementation, the random forest architecture consists of the following parts:
(1) Bagging: Each of the 100 trees is trained on a random subset of the training data (sampling with replacement), known as
bagging. This approach ensures that each tree sees a slightly different version of the dataset, promoting diversity among trees
and making the forest resilient to noisy data; (2) Feature Selection for Each Split: At each split within a decision tree, Random
Forest considers a random subset of features rather than all features. This randomness further diversifies the trees, as each
tree may focus on a different aspect of the data, which prevents any single feature from dominating the model’s decisions; (3)
Voting Mechanism: For each input sequence, each tree predicts an action. The final prediction for the action class is made
by majority voting, where the class with the most votes from all trees is chosen. This voting strategy improves stability and
accuracy, as errors by individual trees tend to cancel out. Majority Voting Formula for Classification is as follows in equation
2. Here, T(X) is the final class prediction, and ”mode” refers to the most frequently occurring class among all T n (x).

T (X) = modeT1(x), T2(x), . . . , Tn(x) (2)

3. LSTM, a type of Recurrent Neural Network (RNN), is well-suited for sequential data and was employed to capture temporal
dependencies in user interactions [37]. The LSTM model can retain information from previous actions, making it highly
effective for predicting subsequent actions based on past interactions. Due to its sequential nature, the LSTM model required
transformation of the data into time-series format, with sequences of actions as input and the next action as the target variable.
The architecture of LSTM shown in Figure 2.

Figure 2. LSTM architecture
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2.5. Evaluation
The performance of each model was evaluated using several metrics: accuracy, precision, and recall. These metrics provided a
comprehensive assessment of the models’ abilities to correctly predict user actions. Accuracy measured the overall correctness
of the models’ predictions, while precision evaluated the proportion of true positive predictions among all positive predictions,
indicating the models’ ability to avoid false positives. Recall assessed the proportion of true positive predictions out of all actual
positives, indicating the models’ ability to capture relevant actions without missing any important patterns [38]. Each metric
was calculated for the testing dataset, providing an unbiased evaluation of model performance. Additionally, error analysis was
conducted to identify common misclassification patterns and to assess each model’s strengths and weaknesses in recognizing
complex or subtle user behaviors [39]. The evaluation results informed the selection of the most suitable model for predicting
user actions in concept map construction.

3. RESULT AND ANALYSIS
The primary goal of this study was to evaluate and compare the performance of LSTM, K-NN, and Random Forest models

in recognizing user interaction patterns and predicting subsequent actions within a concept map construction platform. Concept
mapping, as an educational tool, requires capturing and interpreting user interaction data to provide timely and adaptive feedback,
making accurate action prediction essential. The purpose of this analysis was twofold: to predict the next action a user might
take based on their historical interactions and to detect common patterns that frequently recur in the data. Using interaction logs
from concept map construction sessions, each model was trained and evaluated in terms of accuracy, precision, and recall. By
examining model performance in accuracy, precision, recall, and computational efficiency, this study seeks to inform best practices
in selecting machine learning and deep learning approaches for complex, sequential user interactions in educational settings. The
matrix evaluation results of sequential action prediction, interaction pattern recognition and computational efficiency can be seen in
Tables 3, 4, 5 and 6.

Table 3. Evaluation of Action Prediction ”Database Material”

Database Material
Accuracy Precision Recall

K-NN 70.53% 70.0% 70.1%
Random Forest 80.35% 79.0% 80.4%

LSTM 83.58% 83.6% 83.6%

Table 4. Evaluation of Action Prediction ”SQL”

SQL Material
Accuracy Precision Recall

K-NN 73.85% 73.0% 73.9%
Random Forest 82.36% 81.0% 82.4%

LSTM 83.91% 84.3% 83.9%

Table 5. Evaluation of User Pattern Interaction

Accuracy Table
Database SQL

K-NN 80.29% 84.72%
Random Forest 87.78% 89.32%

LSTM 87.55% 89.40%

Table 6. Computational Efficiency

Action Prediction User Pattern Interaction
Database SQL Database SQL

K-NN 1s 2s 4s 3s
Random Forest 4s 6s 5s 5s

LSTM 1m 1m 1m 1m
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The results of the analysis reveal distinct strengths and limitations among the three models. The LSTM model achieved
the highest accuracy at 83.91%, with a precision of 84.28% and a recall of 83.9%. This superior performance is attributed to
LSTM’s ability to learn from temporal dependencies, which is particularly relevant for predicting user actions based on sequential
interaction data. However, the LSTM model was also the most computationally intensive, resulting in longer training times and
higher memory requirements due to its recurrent nature. In contrast, K-NN demonstrated the shortest training time but only reached
an accuracy of 70.53%, K-NN’s lower performance is likely due to its reliance on distance-based metrics, which may be insufficient
for capturing the nuanced, sequential patterns inherent in user interaction data. Random Forest, positioned between LSTM and
K-NN, achieved a moderate accuracy of 80.53%. Unlike LSTM, Random Forest does not natively process sequential information,
but its ensemble structure allowed it to generalize reasonably well across different action types, balancing predictive power with
computational efficiency.

This capability allowed LSTM to excel in scenarios where user actions followed a complex and dependent sequence, which
is typical in concept mapping. In comparison, K-NN demonstrated moderate accuracy, performing adequately in cases where recent
actions had similarities with past interactions. However, its limitations became evident with longer, more complex sequences, as
it lacks an inherent capacity to capture temporal dependencies. Random forests also have good value, but the LSTM works better
for this case. While highly effective in certain applications, Random Forest exhibited limitations in sequential prediction due to its
approach of treating each action independently; thus, its prediction accuracy was slightly lower in this context. User actions involving
complex decision-making or sequences were often incorrectly predicted. The LSTM model, despite its strength in sequence learning,
encountered challenges with actions that were sporadic or lacked clear temporal continuity, leading to misclassifications in cases
where interaction patterns were sparse or irregular. Computationally, the LSTM model was the most resource-intensive due to its
architecture, while Random Forest benefited from parallel processing capabilities, making it faster to train and test. K-NN, while
quick in training, requires more computational resources during prediction as it calculates distances to all training points, which may
limit its scalability with larger datasets. The analysis results also show a linear relationship between the two materials, ”relational
database” and ”SQL.” This linearity indicates a consistent connection between the two, where all the models work linearly on
both materials. In practical terms, SQL is the primary language for interacting with relational databases, providing data retrieval,
manipulation, and management commands. Relational databases, structured in tables with defined relationships, rely on SQL to
execute queries, manage transactions, and ensure data integrity.

Both Random Forest and LSTM models performed well in interaction pattern recognition analysis, showcasing their strengths
in identifying recurring patterns in user interaction data. However, when focusing on specific materials, subtle differences emerged
in model performance between ”relational database” and ”SQL” material. Random Forest showed a slight advantage for relational
databases, likely due to its ability to capture intricate, non-sequential patterns in user interactions with structured data. Random
Forest’s approach of evaluating feature importance and handling complex decision boundaries made it particularly effective in recog-
nizing patterns associated with relational database interactions, where actions often depend on hierarchical and relational structures.
Conversely, for SQL material, the LSTM model demonstrated marginally better performance. LSTM’s strength in handling sequences
and capturing dependencies across time steps allowed it to model the progression of SQL operations better, enhancing its predictive
accuracy on SQL-specific tasks. While Random Forest excelled slightly more on relational database material and LSTM on SQL
material, the difference in accuracy between the two models was insignificant. Both models were highly effective across materials,
indicating that either could be reliably used depending on task requirements. However, these small differences suggest that leveraging
each model according to its specific strengths could yield optimal results, especially in applications where even minor performance
gains are beneficial. But, overall, the deep learning LSTM model performs better.

K-NN is easy to implement and interpret, it has some notable limitations, particularly in the context of interaction pattern
recognition. First, K-NN is computationally inefficient, as it requires storing the entire training dataset and calculating distances
between the query point and all training samples during prediction. This becomes increasingly costly with larger datasets. Second,
K-NN is sensitive to irrelevant features; as all features contribute equally to the distance metric, its performance can degrade when
dealing with high-dimensional data or when irrelevant features are present. Most critically, K-NN lacks the ability to consider
temporal dynamics, which limits its effectiveness in tasks that rely on understanding the order of user actions. From the best model,
the results of patterns that often appear in the construction of concept maps can be seen in Table 7 and in Figure 3 show the distribution
of the patterns.
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Table 7. Common Pattern Set

Common Pattern Frequency
Move −→ Click −→ Move −→ Click −→ Move −→ Click −→ Move −→ Click −→ Move −→ Click 239
Click −→ Move −→ Click −→ Move −→ Click −→ Move −→ Click −→ Move −→ Click −→ Move 224
Click −→ Move −→ Click −→ Move −→ Connect −→ Click −→ Move −→ Connect −→ Click −→ Move 98
Click −→ Move −→ Connect −→ Click −→ Move −→ Click −→ Move −→ Connect −→ Click −→ Move 85
Move −→ Click −→ Move −→ Click −→ Move −→ Connect −→ Click −→ Move −→ Connect −→ Click 76
Connect −→ Click −→ Move −→ Click −→ Move −→ Click −→ Move −→ Connect −→ Click −→ Move 71
Move −→ Click −→ Move −→ Connect −→ Click −→ Move −→ Click −→ Move −→ Connect −→ Click 67

Figure 3. Distribution of User Pattern Interaction

It illustrates a summary of frequent action patterns and a visual representation of clusters derived from user behavior data.
It showcases the most commonly occurring sequences of actions among users alongside their respective frequencies. This list of
sequences identifies recurring patterns in user activity, offering insights into common pathways or workflows that users follow. The
observed patterns and clustering reveal meaningful insights into user behavior, highlighting common action sequences and typical
workflows. The most frequent sequences, such as ”Click −→ Move −→ Click −→ Move −→ Click −→ Move −→ Click −→ Move”
and ”Move −→ Click −→ Move −→ Click −→ Move,” suggest that users are often alternating between clicking and moving actions.
This repetitive behavior implies that users might navigate through the interface multiple times in a sequence and indicates that the
user only frequently moves components without making connections. More complex sequences that incorporate the Connect action,
such as ”Click −→ Move −→ Connect −→ Move −→ Click −→ Move −→ Connect”, suggest that users often engage in actions that
involve linking or connecting different elements in the system after repeatedly moving components. This may indicate that the user
is confident in making a connection after collecting some components. Interestingly, disconnect actions are less frequent in these
common patterns, suggesting that users rarely need to undo connections once they have made them. This may imply that users are
confident in their actions. This stability in user workflows is positive as it suggests that users can proceed with tasks without frequent
reversal, which often points to a well-structured interface. As shown in the scatter plot, the clustering provides additional context by
grouping users with similar behaviors. For example, Cluster 0 appears isolated and sparse, suggesting a smaller group of users with
unique behavior patterns, possibly representing an alternative workflow or using specific features. In contrast, Clusters 1 and 2 are
denser and centrally located, likely capturing the majority of users who follow the most common, repetitive workflows. This central
clustering indicates that many users share similar patterns, which could reflect common paths or workflows within the application.
The additional clusters may represent groups with moderate variations, possibly users who blend typical and atypical behaviors.

The findings underscore the practical considerations for selecting models in the context of concept map construction applica-
tions. The LSTM model is particularly suitable for applications where action prediction accuracy is paramount, and user interactions
exhibit clear temporal patterns. The sequential learning capability of LSTM aligns well with prior research that highlights its effec-
tiveness in handling temporal data. This is linear with some previous research that shows that the LSTM is suitable for sequential
data [40–42]. Although LSTM achieved the highest accuracy at 83.91%, its training time takes the longest time compared to K-NN
and Random Forest. These limitations arise due to the sequential data processing inherent in its architecture, which contrasts with the
faster, less resource-intensive alternatives like Random Forest and K-NN. Future research could explore optimized LSTM variants
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or hybrid models combining LSTM layers with more efficient algorithms to balance accuracy with computational efficiency. K-NN,
in contrast, stands out for its simplicity and minimal training time, making it a viable option for situations where interpretability
and rapid training are valued, though at the cost of accuracy. Its dependence on distance-based metrics renders it less effective for
complex, temporally dependent interactions, yet this drawback could potentially be mitigated through feature scaling or other pre-
processing steps. Random Forest, by comparison, provides a balanced approach with good generalization across varied interaction
types and a more favorable computational profile than LSTM. However, its inability to naturally incorporate temporal dependencies
suggests that feature engineering, such as the inclusion of temporal variables, might improve its efficacy for action prediction tasks
where sequence matters.

Analyzing user behavior patterns can significantly enhance the learning experience by providing personalized and adaptive
support. Identifying interaction patterns can help in designing a group based on their understanding of making a concept map. Edu-
cators could monitor group progress. This provides a more granular understanding of how students engage with the material, allowing
for better formative assessments that help guide the learning process. By analyzing the patterns across a wide group of learners, ed-
ucators, and instructional designers can gain valuable insights into common difficulties or successful strategies. These insights can
inform adjustments to the curriculum or learning tools, creating a more tailored and efficient learning experience for future learners.
Predictive models could provide learners with visual progress indicators, showing how their understanding is evolving over time.
This could help learners stay motivated and develop a deeper understanding of their learning journey. Traditional assessment models
often rely on static tests that may not capture the nuances of a learner’s understanding. Predicting user behavior patterns can also
allow for dynamic, ongoing assessments that evaluate learners in real-time based on their actions. This assessment could be used to
generate more holistic, continuous measures of learning progress. For the user interface, predicting the actions of novice learners
can help design systems that automatically introduce expert-level strategies. If a novice struggles with the same repetitive actions,
a system could recognize this pattern and suggest more advanced or efficient ways to structure their concept map. The patterns of
behavior could be used to create personalized learning paths. For instance, if a user consistently follows certain patterns that reflect
limited understanding, the system could adapt the content or the structure of tasks to provide additional support, explanations, or
scaffolded tasks aimed at addressing knowledge gaps.

4. CONCLUSION
In conclusion, the LSTM model appears most suitable for high-accuracy action prediction and interaction pattern recognition in

concept map applications where sequential user interactions are central to the task. LSTM was most effective for action prediction due
to its ability to model sequences, making it ideal for environments where the order of user actions is significant. On the other hand, for
environments constrained by computational resources or where efficiency is prioritized, Random Forest offers a practical alternative
with respectable accuracy and speed. Random Forest also proved invaluable for identifying recurring interaction patterns, enabling a
deeper understanding of user behaviors that commonly appear in concept map construction. Although K-NN performed with lower
accuracy, its simplicity and speed make it a feasible choice for basic implementations or as a component in ensemble methods. While
useful in simpler scenarios, K-NN was less suited to handling complex interaction patterns. Future studies should investigate hybrid
models’ potential to combine LSTM’s temporal learning capabilities with Random Forest’s generalization strengths, providing a
balanced approach for real-time action prediction. Additionally, employing data augmentation and tailored feature engineering could
further enhance the performance of non-sequential models, enabling them to capture complex, interaction-based user behaviors better
and support adaptive feedback in concept map construction platforms.
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