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Tomatoes are one of the most widely cultivated and consumed crops globally, but they are highly sus-
ceptible to various diseases that can significantly reduce yield and quality. Early detection of these
diseases is crucial for effective management and prevention. The objective of this study is to develop
an accurate early detection system for tomato diseases using deep learning to support effective crop
management. The research method employed is a modified Convolutional Neural Network trained
on the PlantVillage dataset, which consists of 21,000 images across 10 disease classes. The study
evaluates three training scenarios using different epoch values (25, 50, and 75) to optimize model
performance. Data preprocessing included image resizing and augmentation, followed by Convolu-
tional Neural Network training and validation. The study’s results showed that increasing epochs
improved the model’s accuracy: 98.18% at 25 epochs, 98.53% at 50 epochs, and 99.19% at 75 epochs.
Precision, recall, and F1-score also increased, from 90.95% at 25 epochs to 95.80% at 75 epochs, in-
dicating enhanced model reliability. However, longer training times were required as the epoch count
increased. This research concludes that a modified Convolutional Neural Network can accurately
classify tomato diseases, providing a reliable and practical tool for early disease detection. The pro-
posed system has the potential to be integrated into mobile applications for real-time use in the field.
It contributes to sustainable agriculture by enabling timely disease intervention and improving crop
productivity.
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1. INTRODUCTION

Tomatoes (Solanum lycopersicum) are among the most widely cultivated horticultural crops globally due to their high nutri-
tional and economic value. However, disease outbreaks remain a major constraint in maximizing tomato yield and quality [1, 2]. This
pharmacological effect can protect a person from diseases such as hepatitis, hypertension, and gingival bleeding. In addition, toma-
toes are rich in vitamins A and C and antioxidants such as lycopene. China became the country with the highest tomato production
in the world in 2022, with a production of 68 million tons. One of the factors that can affect tomato production is disease. Diseases
that attack tomato plants significantly impact the quality of their production, and early detection is needed to identify and reduce the
risk of damage. In general, early detection is usually carried out by agricultural or botanical experts who require special expertise
and take a long time, so it is not efficient to be applied widely [3-5]. With the high potential for errors in manual early detection,
the implementation of automatic early detection is very crucial to speed up handling and minimize errors in the detection process
[6]. With advances in technology in deep learning, especially in image processing, there is an opportunity to develop an automated
system to identify plant diseases with high accuracy [7].

In recent years, there have been many studies using deep learning to classify types of diseases in tomato plants [8—10]. The use
of deep learning methods has been proven to provide better results when compared to traditional machine learning methods [11, 12].
Research conducted by Karthik [13] using a Residual Convolutional Neural Network (CNN) to classify three types of diseases in
tomato plants with an accuracy of 98%. Although the results of this study show high accuracy, by only focusing on three types of
diseases, this model is less applicable to more complex types of diseases. Argawal [14] tries to overcome the scope of the number of
diseases used, where in his study, he used ten types of diseases, and CNN was used as the classification method. This study provides
an accuracy of 91.2%. Trivedi [15] also used ten types of diseases and the CNN method to classify tomato plant disease types with
an accuracy of 98.42%. Anandhakrishnan [16] used the deep convolutional neural network method to classify tomato plant diseases
with an accuracy of 98.40%. These results indicate that CNN is adequate for classifying tomato plant disease types. Islam [17] used
CNN to classify tomato plant disease types with an accuracy of 99% for the training process, 97.5% for validation, and 98% for
the testing process. Abbas [18] used the conditional generative adversarial network (C-GAN) method to detect diseases in tomato
plants. This study showed an accuracy of 99.51% for five classes, 98.65% for seven classes, and 97.11% for ten classes. However,
the complexity of the C-GAN architecture and high computational requirements pose challenges in its widespread application. Chen
[19] used the Binary Wavelet Transform method combined with Retinex (BWTR) to remove noise. Furthermore, the Artificial Bee
Colony (ABCK) algorithm separated tomato leaves from the background. The final process is classification using the Both-channel
Residual Attention Network (B-ARNet) model. This study achieved an accuracy of 89%.

Furthermore, Sakkarvarthi [20] used the CNN method for tomato plant disease classification. During training, the model
created provided an accuracy of 98%, but during testing on new data, the model created only provided an accuracy of 88.17%. This
indicates a problem in the classification process, where the model created cannot generalize to new data well. Meanwhile, Badiger
[21] created a model known as GJ-GSO + DbneAlexNet, where this algorithm is a modified algorithm from a neural network and
an optimization algorithm called Gradient Jaya-Golden Search Optimization (GJ-GSO). This study also uses U-Net for the image
segmentation process. This study provides an accuracy of 92.4%. Baser [22] also modified the CNN architecture to increase the
accuracy in classifying tomato plant diseases. This study provides an accuracy of 98.19% with ten classes. Meanwhile, Yang [23]
used the LSGNet (lightweight convolutional neural network) method for tomato plant disease classification with an accuracy of
95.54%.

The novelty of this study lies in its systematic evaluation of epoch variations (25, 50, and 75) on a modified CNN architecture,
which is rarely explored in previous research. In addition, this study focuses on achieving high accuracy, addressing generalization
issues, and reducing computational cost, which are common limitations in prior works. This study addresses the identified gaps by
developing a modified CNN architecture that improves classification accuracy and generalization. Unlike existing models that suffer
from overfitting or high computational cost, the proposed architecture employs four convolutional layers, two dense layers, and a
dropout regularization strategy (50%) to enhance learning without overfitting. In addition, the study systematically investigates epoch
values (25, 50, and 75) to analyze their impact on model performance and training time. This hyperparameter exploration revealed
that 75 epochs yielded the best results, achieving 99.16% accuracy, precision, recall, and F1-score, all at 95.8%, outperforming prior
methods using the same dataset. These findings demonstrate that the proposed CNN is accurate and practical, balancing performance
and computational cost. The model is especially suitable for real-world agricultural deployment, where computational resources may
be limited but accurate early disease detection is essential, Despite the promising results of previous CNN-based models, many of
these studies lack systematic exploration of training hyperparameters, especially epoch variation, and often struggle with overfitting
or high computational complexity, limiting real-world applicability.

The implications of this research are significant for both the agricultural sector and the broader field of deep learning. For
farmers, developing an accurate and efficient automated disease detection system can lead to early identification of plant diseases,
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enabling timely intervention and reducing crop losses. This, in turn, can improve tomato production quality and yield, contributing
to food security and economic benefits. For the scientific community, this research contributes to advancing deep learning techniques
in agriculture, particularly optimizing CNN architectures for image classification tasks. The findings can serve as a foundation for
future studies aiming to develop lightweight, high-performance models for other crop diseases or even other domains requiring image
classification. Ultimately, this research bridges the gap between technological innovation and practical agricultural applications,
fostering sustainable farming practices.

2. RESEARCH METHOD

This section concisely describes the proposed method for tomato disease classification. The research process began with
collecting relevant data, the initial and significant step. After the data was collected, the next stage was data pre-processing, where
the collected data was cleaned, processed, and prepared so that it was ready to be used in the model. The next stage was model
building. Appropriate methods and techniques were applied to build a classification model at this stage. Based on the processed data,
this model was designed to identify and classify various types of diseases in tomato plants. After the model was built, the last stage
was model testing. The model was tested in this stage to assess its accuracy and effectiveness in classifying tomato plant diseases.
This testing was essential to ensure the model could provide accurate and reliable results in actual practice. This testing is essential
to ensure the model can provide accurate and reliable results in actual practice. Figure 1 presents a general flowchart of the research

conducted.

Data Collecting

¥

Data Pre-processing

h

Maodel

h

Evaluation

Figure 1. Research framework

2.1. Data Collecting

The dataset used in this research comes from the Plant Village dataset, available online and can be downloaded at https://data.
mendeley.com/datasets/tywbtsjrjv/1. This dataset contains 38 types of plant diseases. However, this research only focused on types
of tomato plant diseases. There were ten types of tomato diseases in this study. Data for each disease consisted of 1000 images in
Table 1. So, the total data used in this research is 10,000. Figure 2 is an example of an image of tomato disease.
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Table 1. Classes of the Tomato Disease Dataset

Class name Number of images
Tomato with bacterial spot 1000
Tomato with early blight 1000
Healthy tomato 1000
Tomato with late blight 1000
Tomato with leaf mold 1000
Tomato with septoria leaf spot 1000
Tomato with two-spotted spider mite 1000
Tomato with target spot 1000
Tomato with mosaic virus 1000
Tomato with yellow leaf curl virus 1000

Figure 2. Sample of a tomato leaf

2.2. Data Preprocessing

The data pre-processing stage is crucial for ensuring that the deep learning model constructed has a firm basis and can be
generalized effectively. Data augmentation follows the gathering and cleaning of the tomato leaf image dataset. It is a method to raise
dataset variability without explicitly adding more data. This is quite crucial in the framework of deep learning, where the variety of
the data may significantly influence the capacity of the model to identify pertinent patterns and features [24].

This work used image rotation, horizontal and vertical flipping, zooming, and brightness and contrast changes among several
augmentation approaches. These methods enhance the data’s variance and replicate several scenarios that tomato leaf photos in the
field could encounter: diverse viewing angles, shifting lighting, and varying leaf sizes. This augmentation should help the deep
learning model be more robust in handling natural fluctuations not observed in the original training data.

Data augmentation also reduces the likelihood of overfitting, where the model becomes too “familiar” with the training data to
lose its capacity to identify patterns in fresh data. Exposing the model to new versions of the same data helps it learn more general
and applicable features rather than merely the particular aspects of the original dataset. Training the CNN model then makes use of
the outcomes of this augmentation. The added data is supposed to increase the generalization and accuracy capacity of the model in
tomato plant disease classification.

2.3. Model Convolutional Neural Network (CNN)

The model developed in this study to classify tomato plant diseases is a modified CNN that deviates from the structure of a
standard CNN to enhance performance in classifying tomato plant diseases. The basic CNN architecture generally consists of a few
convolutional layers, pooling, and dense layers. In contrast, the proposed architecture introduces a deeper and more structured design,
comprising four convolutional layers with increasing filter sizes of 32, 64, 64, and 128, respectively. These layers are responsible for
progressively extracting more complex and abstract features from the input images of tomato leaves, as illustrated in Figure 3.
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Input (227, 227, 3) Conv2D (32) Conv2D (64) MaxPooling(2,2)

Flatten H MaxPooling(2,2) w MaxPooling(2,2)

Dense (128)

Figure 3. Proposed method

Three MaxPooling layers with a pool size of 2x2 are strategically placed after the first, third, and fourth convolutional layers
to reduce the spatial dimensions and computational complexity while retaining the most salient features. Furthermore, a Dropout
layer with a 50% drop rate is applied after the final convolutional block to combat overfitting and improve generalization to unseen
data. This component is not present in most basic CNN architectures and is essential for increasing robustness.

Following the feature extraction phase, the network transitions to a classification phase, consisting of a Flatten layer and two
fully connected (Dense) layers with 64 and 128 neurons, respectively, each using the ReLU activation function. This configuration
allows the model to learn complex nonlinear combinations of the extracted features. Finally, a Softmax output layer with 10 neurons
is employed to classify the input into one of the ten tomato disease categories.

These modifications—deeper convolutional layers, regularized architecture with dropout, and enhanced dense connections—were
designed to improve feature learning, accuracy, and generalization compared to basic CNN models. The impact of these structural
changes is reflected in the experimental results, where the model consistently achieved high accuracy and balanced performance
metrics, outperforming several other CNN-based approaches reported in the literature.

2.4. Evaluation Performance

A confusion matrix is used to measure the performance of the model created. A confusion matrix is a matrix that can be used
to evaluate the performance of a model. This matrix works by comparing actual values with predicted values. The performance is
measured using a confusion matrix, which includes accuracy, precision, recall, and F1-score.

1. Precision measures the proportion of correctly predicted positive instances (true positives, TP) out of all instances predicted as
positive (true positives plus false positives, FP). It is calculated using Equation 1. This metric is particularly useful when mini-
mizing false positives is critical, such as in disease detection, where incorrect diagnoses could lead to unnecessary treatments.

TP
Precision = W (1

2. Recall, also known as sensitivity, evaluates the proportion of correctly predicted positive instances (true positives, TP) out
of all actual positive instances (true positives plus false negatives, FN). It is computed using Equation 2. Recall is crucial in
applications where missing positive cases, such as undetected diseases, could have severe consequences. A high recall indicates
that the model is effective at identifying most of the relevant instances.

TP
Recall = ——— 2
TP+ FN @

3. Accuracy is a widely used metric that assesses the overall correctness of the model by calculating the ratio of correctly predicted
instances (true positives, TP, and true negatives, TN) to the total number of instances (true positives, false positives, FP, true
negatives, and false negatives, FN). It is computed using Equation 3. While accuracy provides a general measure of model
performance, it may be less informative in imbalanced datasets where one class significantly outweighs the other.

TP+TN
TP+FP+TN+ FN

Accuracy =

3)
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4. The F1 score is a harmonic mean of precision and recall, providing a balanced measure of a model’s performance, especially
when there is an uneven class distribution. It is calculated using Equation 4. The F1 score is particularly useful when both
false positives and false negatives need to be minimized, as it combines the strengths of both precision and recall into a single
metric. This makes it a robust evaluation tool for classification tasks in fields like agriculture, where both over-detection and
under-detection of diseases can have significant implications.

2 x Precision * Recall
F1-5 = 4
core Precision + Recall “)

2.5. Experimental Setup

The model created is run on an Intel Core i7 processor and a 16GB RAM computer with the Ubuntu 20.04.4 LTS operating
system. The model is implemented in Python with the TensorFlow library. The input image size is 227x227 x 3, all in RGB format,
during the training process using the following parameters: batch size 32, learning rate 0.001, and Adam optimizer. Meanwhile,
the epoch used in this research uses three different values, namely 25, 50, and 75. This research divides the dataset into training,
validation, and testing with a percentage ratio of 70:10:20. The test scenarios carried out in this research are shown in Table 2.

The selection of 25, 50, and 75 epochs in the experimental setup was based on exploring how different training durations affect
the model’s learning ability, accuracy, and generalization. A lower number of epochs, such as 25, was chosen to represent a short
training cycle, which is helpful to assess how quickly the model can converge and whether early stopping might be sufficient. It
also helps to understand the model’s baseline performance with minimal training. An intermediate value of 50 epochs was selected
as a standard reference point, commonly used in many deep learning studies, to evaluate whether extending training beyond the
minimum improves model performance significantly without introducing overfitting. This helps strike a balance between training
time and model performance. The higher value of 75 epochs was selected to observe whether additional training improves accuracy
and generalization or leads to diminishing returns and potential overfitting. By comparing performance across these three points, this
study aimed to identify the optimal number of epochs for training the modified CNN architecture. The variation in epoch values also
enabled analysis of the trade-off between accuracy improvement and computational cost, which is essential for practical deployment
in resource-constrained environments.

Table 2. Test Scenario

Scenario Parameter

Scenario 1 epoch 25, batch size 32, learning rate 0.001, Adam optimizer
Scenario 2 epoch 50, batch size 32, learning rate 0.001, Adam optimizer
Scenario 3 epoch 75, batch size 32, learning rate 0.001, Adam optimizer

3. RESULT AND ANALYSIS

In this section, trials are carried out on the model that has been created. The trials in this research were divided into several
scenarios according to the scenarios in subchapter 2.5. The following are the results of trials carried out with several scenarios.

3.1. Scenario 1

Testing carried out in this scenario begins with training the model created. This process aims to provide knowledge to the
model developed in recognizing the characteristics of the training data. Apart from that, this process is also used to identify patterns
from images that represent certain classes. The model created is based on the information provided during the training process.
Figure 4 is an image of the results of the training process of the model created. Based on Figure 4, training accuracy, training loss,
and validation loss can be seen. Training accuracy is a metric used to measure how well the model predicts data during training.
If a model has high accuracy during the training process, then the model can learn the patterns that exist during training. In this
study, the training accuracy value was 92.4%. Meanwhile, validation accuracy shows how well the model can recognize data not
used during training. The higher validation accuracy value shows that the model created can recognize new data not used for training.
The training loss value shows how big the difference is between the predicted value produced by the model and the actual value.
Meanwhile, validation loss is used to measure how big the difference is between the expected value and the actual value in the
validation data. After completing the training process, the following process tests the model created.
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Figure 4. Training, validation accuracy, training loss, and validation loss for scenario 1

The results of this test are shown in the confusion matrix, illustrated in Figure 5. The model evaluation results in this scenario
show that the model performance is very good in recognizing mosaic disease types and healthy leaves. For mosaic disease, the model
correctly classified 199 out of 200 images, achieving an accuracy rate of 99.5% in this class. Likewise, the model could recognize
199 out of 200 images with the same accuracy of 99.5% for healthy leaves. However, the model performance showed lower results
for early blight disease types. of the 200 images tested, the model only succeeded in classifying 160 images correctly, and 40 images
could not be classified according to their class, resulting in an accuracy of 80%. Overall, this model shows excellent results, with a
total accuracy of 98.19%. The model also has precision, recall, and F1 scores, each of which is 90.95%. These values show that the

model is accurate in classification and consistent in detecting all types of diseases included in the dataset.
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Figure 5. Confusion matrix for scenario 1

3.2. Scenario 2

The parameters used in this scenario are learning rate 0.001, batch size 32, epoch 50, and Adam for the optimizer. Testing
carried out in this scenario begins with training the model created. The model’s training process results are shown in Figure 6,
where the training accuracy value shows how well the model learns from the data to train it. Meanwhile, validation training tests the
model’s ability to generalize data, which it has never seen before. Training loss shows how far the model predictions are from the
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actual values. Meanwhile, validation loss shows the prediction value of the model against validation data. In this study, the training
accuracy value was 95.79%. The trial results in this scenario as a confusion matrix, as shown in Figure 7. Based on the confusion
matrix, the model can classify the type of mosaic disease entirely. This shows that the model made has a high level of accuracy
in recognizing the kind of mosaic disease. In addition, the model created can also identify all types of tomato plants that do not
experience disease. Meanwhile, the model made gives the lowest results in recognizing the type of late blight disease. Of the 200
images, 165 can be identified correctly, while 35 cannot be recognized according to the actual class. All of the models that were made
show excellent performance. This is indicated by the accuracy value of 98.53%, precision of 92.65%, recall of 92.65%, and F1 score
of 92.65%.

Maodel Accuracy

Model Loss

—— Taining Accuracy
Validation Accuracy

VAW/A.__/\/V-—«/\/‘\

—— Taining Loss
Validation Loss

09
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/

Accuracy

04

03

02

Epoch Epoch

Figure 6. Training, validation accuracy, training loss, and validation loss for scenario 2
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Figure 7. Confusion matrix for scenario 2

3.3. Scenario 3

In this scenario, the tests carried out are similar to those in scenarios 1 and 2. In this scenario, the only difference is the
number of epochs used. In this scenario, the epoch used is 75. By using this number of epochs, it is hoped that the model created will
experience an increase in predicting data in greater depth. Increasing the number of epochs is expected to improve model performance
in the classification process. However, in general, an increase in epochs will be followed by an increase in execution time during
the training process. The training process results are shown in Figure 8, which includes the training accuracy, validation accuracy,
training loss, and validation loss. The training accuracy value has increased because the model has started to learn from existing
data. Training accuracy appears to be stable at epochs 60 to 75. Meanwhile, validation accuracy also increases as the epoch value
increases. This shows that the model created not only learns to recognize training data, but also learns data that has never been seen
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at all. Meanwhile, the training loss value will decrease. The training loss value decreases drastically at the beginning of the training
process. However, this decrease occurs consistently as the epoch value increases. Likewise, the validation loss value also experienced
a drastic decline at the start of training. However, this decrease occurs consistently with increasing epoch values. Figure 8 shows that
during the training process, the model creates memories of the training data and generalizes new data very well. In this study, the
training accuracy value was 97.31%.
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Figure 8. Training, validation accuracy, training loss, and validation loss for scenario 3

Meanwhile, the model’s performance in recognizing new data is shown as a confusion matrix in Figure 9. Based on Figure 9,
the model created is not yet fully able to correctly recognize the type of tomato plant disease. This late blight disease gives the lowest
results compared to other types of disease. Of the 200 images, the model could correctly recognize 180, while the other 20 were
incorrectly recognized. Meanwhile, the model gave the highest recognition results for mosaic virus disease types and tomato types
unaffected by the disease. The two types of models created could correctly recognize 198 images out of 200 images. In contrast, two
images could not be recognized correctly according to their class. Overall, the model created provides very good performance. This
is shown by the accuracy value of 99.16%, precision of 95.8%, recall of 95.8%, and F1 score of 95.8%. In this way, the model can
recognize new data that it has never seen before very well.
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Figure 9. Confusion matrix for scenario 3

3.4. Analysis

Figure 10 is the result of trials for all scenarios (1, 2, and 3). The test uses several different epoch values. The results show that
the model created experiences a consistent upward trend in performance as the epoch value increases. The initial epoch value used
is 25. With this epoch value, the model created provides an accuracy of 98.19%, and precision, recall, and F1 score values are all
90.95%. These results show that the model’s performance is good. However, there is still room for improvement between predicted

A Novel CNN ... (Miftahus Sholihin)



474 O ISSN: 2476-9843

positive and negative values, which are measured based on precision and recall values. When the epoch value was set to 50, the
model experienced a significant increase in performance. This is shown by increasing accuracy to 98.53% and precision, recall, and
F1 scores to 92.65%. This increase shows that the model created can recognize disease types better than using epoch 25. This can
happen because the model created requires a longer training time than the epoch 25 value, so the model can learn more details in
recognizing a pattern in the image.

96.19 9.53 99.16

%58 %58 )
%095 m'gslﬂ 92.65 92.65 92.65

100

Percentage (%)

-] 50 7
Epochs

Figure 10. Testing results with epoch values 25, 50, and 75.

The testing process results, as summarized in Table 3, demonstrate the effectiveness of the proposed method compared to
previous studies. The proposed method, which utilizes a modified Convolutional Neural Network (CNN) architecture, achieves an
accuracy of 99.16% on the PlantVillage dataset for 10 classes of tomato plant diseases during testing. This performance surpasses the
testing results of several existing methods, as shown in the table—for instance, Abbas et al. [18] employed DenseNet and Conditional
Generative Adversarial Networks (C-GAN) to achieve an accuracy of 97.11% for 10 classes during testing, while Karthik [13] used
a Residual CNN to achieve 98% accuracy, but was limited to only three classes. Similarly, Agarwal [14] achieved 91.20% accuracy
using a basic CNN for 10 classes during testing, and Sakkarvarthi [20] reported a significant drop in accuracy to 84.78% during
testing, highlighting poor generalization.

The proposed method also outperforms other advanced techniques during testing, such as the Attention-Driven Composite
Loss Residual Network (ADCLR) used by Islam et al. [17], which achieved 96.60% accuracy, and the CNN model by Trivedi et al.
[15], which achieved 98.49% accuracy for 10 classes. The higher accuracy of the proposed method during testing underscores its
superior ability to generalize well to unseen data, a critical factor for practical deployment in agricultural settings. This improvement
is attributed to the optimized architecture and parameter tuning, particularly the careful adjustment of epoch values, which enhances
the model’s learning capability and reduces overfitting.

Furthermore, the proposed method’s ability to achieve 99.16% accuracy during testing, while maintaining high precision,
recall, and F1 scores (all at 95.8%), demonstrates its robustness and reliability. This balance between accuracy and generalization
is critical for practical applications, as it ensures that the model performs well on training data and unseen data, which is essential
for real-world deployment in agricultural settings. The results also indicate that the proposed method addresses the limitations of
previous models, such as poor generalization (as seen in Sakkarvarthi [20]) or limited applicability to a small number of disease
classes (as in Karthik [16]).

The proposed method’s testing results highlight its superiority over existing approaches, making it a highly effective tool for
tomato plant disease classification. Its ability to maintain high accuracy and balanced performance metrics during testing ensures its
practicality and reliability for farmers. It enables early and accurate disease detection to minimize crop losses and improve agricultural
productivity.

Although the proposed method adopts the Convolutional Neural Network (CNN) as its foundation, it is important to emphasize
that this study does not merely reuse standard CNN models previously applied in related works. Instead, a modified CNN architecture
is introduced and specifically designed to classify ten classes of tomato leaf diseases using the PlantVillage dataset. The modifications
made to the architecture include the integration of four convolutional layers with progressively increasing filter sizes (32, 64, 64, and
128) to enhance feature extraction capabilities. To reduce the spatial dimensions of the feature maps and control overfitting, three
MaxPooling layers are inserted at strategic positions within the architecture. A Dropout layer with a dropout rate of 50% is employed
to regularize the model and prevent overfitting during training. In the final stage, two fully connected layers are placed before the
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output layer to capture complex patterns, followed by a softmax layer for classification. The input size is also adjusted to 227 %227 x3
to ensure compatibility with the architecture and dataset.

These modifications enhance the model’s ability to extract deep hierarchical features, improve its generalization performance,
and reduce overfitting — all of which distinguish it from conventional CNN architectures reported in earlier works, such as those
by Agarwal [14], Sakkarvarthi [20], and Trivedi et al. [15]. Therefore, while the backbone remains CNN, this study’s architectural
design, depth, and regularization strategies are novel and contribute to the improved accuracy and robustness demonstrated in the
experimental results.

Table 3. Comparison with Related Studies

Reference Methods Dataset Classes  Accuracy

[18] DenseNet, C-GAN  PlantVillage 10 97.11%
[13] Residual CNN PlantVillage 3 98%
(14] CNN PlantVillage 10 91.20%
[20] CNN PlantVillage - 84.78%
(17] ADCLR PlantVillage 10 96.60%
[15] CNN PlantVillage 10 98.49%

Proposed method CNN PlantVillage 10 99.16%

4. CONCLUSION

This study successfully developed a modified Convolutional Neural Network (CNN) classification model for tomato plant
disease. The results of trials with various epoch values prove that increasing the number of epochs consistently improves model
performance. The model created achieved the highest accuracy of 99.1% at epoch 75, with high precision, recall, and F1 score values
of 95.8% each. These results indicate that the model can learn to make predictions with minimal error rates from training data.
Compared to previous studies, the model created shows superior performance with higher accuracy, 99.16%. However, increasing
epochs also results in a significant increase in training time. Therefore, consideration is needed between increasing accuracy and
time efficiency in the practical application of this model. Overall, the model created shows excellent potential in tomato plant disease
classification and can effectively support agriculture.

Several aspects can be explored for further development. Although the created model shows high performance, more complex
CNN architectures or ensemble techniques can be explored to improve the accuracy and generalization of the model. Optimization
techniques such as transfer learning, pruning, or quantization can also be applied to overcome the problem of increasing training time
by adding epochs. In addition, testing with more varied datasets is needed to ensure the robustness of the model in real conditions.
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