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Lung cancer remains one of the leading causes of cancer-related mortality worldwide, highlighting the
critical need for accurate and early diagnosis. This study aims to improve the prediction accuracy of
lung cancer diagnosis by enhancing the K-Medoids clustering algorithm through the integration of a
quantum computing approach using the Manhattan distance metric. The research employed a publicly
available lung cancer dataset comprising 309 patient records with 14 diagnostic attributes. A com-
parative experimental method was applied to evaluate the performance of the classical K-Medoids
and the proposed quantum-enhanced K-Medoids, assessed using clustering accuracy, precision, recall,
and F1-score. The experimental results demonstrate that the quantum-based method achieved com-
parable accuracy to the classical approach, with both attaining an accuracy of 88%. These findings
indicate that the quantum-enhanced clustering method is capable of matching the predictive perfor-
mance of the classical algorithm after sufficient training. In conclusion, while the proposed method
shows promise, further investigation is needed to address parameter stability and to validate the model
on larger datasets for potential application in clinical decision support systems.
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1. INTRODUCTION

Quantum computing leverages principles such as superposition and entanglement to enable parallel computation and high-
speed data processing, offering transformative potential in fields such as cryptography, optimization, and data mining [1]. Unlike
classical computing, quantum systems operate on qubits, which enable the encoding and processing of information in a fundamentally
different manner. Quantum algorithms, such as Grover’s and the Quantum Approximate Optimization Algorithm (QAOA), have
shown promise in solving combinatorial problems more efficiently than their classical counterparts [2, 3].

Clustering is a foundational task in data mining that groups data objects based on similarity without predefined labels [4, 5].
The K-Medoids algorithm is a popular partitioning technique that improves upon K-Means by using actual data points (medoids) as
cluster centers, making it more robust to outliers [6, 7]. However, K-Medoids is computationally intensive, especially for large-scale
or high-dimensional datasets, which limits its practical scalability. Integrating quantum computing into clustering algorithms has
the potential to overcome these computational limitations by exploiting quantum parallelism for distance computation and cluster
assignment tasks.

Several studies have explored the application of K-Medoids across various domains, including e-commerce [8], traffic systems
[9], and bioinformatics [10]. These studies often modify distance metrics (e.g., Manhattan, Euclidean, Chebyshev) or combine
them with evaluation indices like CH or Silhouette to enhance performance. Comparative research also shows that while algorithms
like DBSCAN may outperform K-Medoids in certain contexts [11], K-Medoids still hold advantages in handling categorical and
noise-prone data.

Despite these developments, there is limited work that integrates quantum computing into K-Medoids, especially in the medical
domain. This research introduces a novel framework that enhances the K-Medoids algorithm by utilizing quantum computing and
the Manhattan distance to predict lung cancer patterns. The dataset used in this study comprises 309 patient records and 14 clinical
attributes relevant to the diagnosis of lung cancer. Data were preprocessed and encoded into qubits using amplitude encoding. The
quantum-enhanced K-Medoids algorithm was simulated using Qiskit on IBM’s quantum simulator, with classical K-Medoids used
as a baseline.

Evaluation of the proposed clustering models was conducted using a comprehensive set of performance metrics, including
clustering accuracy, recall, precision, and F1-score, to ensure a balanced assessment of both classification quality and predictive
reliability. To validate the robustness of the model outcomes, a repeated hold-out testing strategy was implemented, allowing for
consistent performance evaluation across multiple randomized training and testing splits. The experimental results revealed that the
quantum-enhanced K-Medoids model achieved an accuracy of 60 representing a 10% improvement over the classical model, which
only reached 50%. Although this improvement may seem moderate, it represents a significant step forward in demonstrating the
feasibility of using quantum computing to process and analyze medical datasets more efficiently. Moreover, the increase in F1-score
and recall further supports the model’s enhanced capability in identifying relevant patterns in patient data, particularly in scenarios
involving subtle variations in symptoms. These findings suggest that, with further optimization and larger datasets, quantum-based
approaches could offer a competitive alternative to conventional clustering methods in medical diagnostics.

The novelty of this research lies in its adaptation of quantum computing to the K-Medoids clustering method in a clinical
prediction context. While existing studies have applied K-Medoids to e-commerce or textual classification, this study explores its
utility in healthcare for the early detection of lung cancer. The main contribution is twofold: (1) a technically feasible method for
integrating quantum computing into clustering tasks, and (2) empirical evidence that supports its potential to enhance prediction
accuracy. Future directions include extending this framework to hybrid quantum-classical models and testing on larger, real-world
medical datasets to validate scalability and robustness.

2.  RESEARCH METHOD

This study integrates the K-Medoids clustering algorithm with quantum computing principles to improve the performance of
medical data analysis, specifically in the context of lung cancer prediction. The K-Medoids algorithm is chosen for its robustness in
handling noise and outliers, making it suitable for medical datasets that often contain irregularities. To measure the similarity between
data points, the Manhattan Distance metric is employed, which is effective in high-dimensional data scenarios and less sensitive
to extreme values compared to Euclidean distance. By incorporating quantum computing, the study aims to enhance clustering
effectiveness through improved computational efficiency, parallel data processing, and flexible data representation using qubits. This
integration allows the algorithm to explore complex solution spaces more efficiently, potentially leading to better separation of cancer
and non-cancer instances. The overall methodology follows several systematically structured stages, including data preprocessing,
classical-quantum encoding, clustering, and evaluation, as illustrated in Figure 1. This hybrid approach represents a novel direction
in combining classical machine learning with quantum technologies for biomedical applications.
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Figure 1. Research Steps

2.1. Data Collection

The dataset used contains 20 instances of medical records related to symptoms of lung cancer. Each instance includes 15
features, such as age, smoking habit, yellow fingers, anxiety, peer pressure, chronic diseases, fatigue, allergy, wheezing, alcohol
consumption, coughing, shortness of breath, swallowing difficulty, chest pain, and the lung cancer label (yes/no). These features are
relevant indicators commonly found in early-stage lung cancer diagnostics. The dataset used in this study consists of 20 instances
of medical records that capture a range of symptoms and behavioral factors associated with lung cancer. Each instance comprises
15 distinct features, including both physiological and lifestyle-related attributes such as age, smoking habits, yellow fingers, anxiety,
peer pressure, presence of chronic diseases, fatigue, allergy, wheezing, alcohol consumption, coughing, shortness of breath, difficulty
swallowing, chest pain, and a final diagnosis label indicating the presence or absence of lung cancer (yes/no). These features are
selected based on their relevance and frequency in early-stage lung cancer cases, as supported by existing medical literature. The
inclusion of both clinical and behavioral factors enables a more comprehensive representation of the patient profile, which is crucial
for building an accurate and robust predictive model. Furthermore, the combination of subjective symptoms and objective indicators
enhances the model’s potential to detect patterns that may not be immediately apparent in traditional diagnostic procedures. Despite
the small dataset size, the diversity of features provides valuable information for initial experimentation with hybrid classical-quantum
approaches in lung cancer prediction.

2.2. Data Preprocessing and Transformation

To enable integration with quantum computing, the dataset undergoes a two-stage transformation. Binary Encoding: Categor-
ical features are encoded into binary form (1 or 0) using rule-based criteria. For instance, smoking = yes is coded as 1, while no is
coded as 0. Features such as age are thresholded (e.g., age > 45 3 1; else § 0). The final binary dataset is used as the classical input.
Qubit Representation using Dirac Notation: The binary values are then mapped to quantum bits (qubits) in Dirac notation. A value
of 1 is represented as ket |1), and 0 as ket |0). For quantum simulation purposes, each classical bit is transformed into a superposed
state, represented as a linear combination of basis states:

) = al0) + B]1) (1

Equation 1, expressed as |a|? + |32 = 1, represents the fundamental principle of a qubit’s state in quantum computing
systems. This equation indicates that the total probability of a qubit being in the basis states |0) and |1) must always equal one.

A commonly used initialization for a qubit is the equal superposition state, written as |¢)) = |0) + |1)) , meaning the qubit

—=(
2
has an equal probability of being measured in either of the two basis states. This form of initial}é;tion is crucial for leveraging the
unique capabilities of quantum computing, such as superposition and interference. Such qubit representations enable probabilistic
data processing in quantum environments, such as IBM Qiskit and Cirq. These platforms provide comprehensive frameworks for
modeling and simulating quantum algorithms, including applications in machine learning and large-scale data analysis. By exploiting
the inherent ability of quantum systems to represent and manipulate information in high-dimensional vector spaces, qubits can be
utilized to process complex, binary-featured datasets more efficiently than classical approaches, especially in fields such as medical

data analysis.

2.3. Quantum K-Medoids Clustering with Manhattan Distance

The K-Medoids algorithm has been adapted for quantum computing environments to enhance its ability to process high-
dimensional medical datasets characterized by binary features. This adaptation is particularly beneficial in handling complex health-
care data where classical algorithms may struggle with scalability and efficiency. The quantum-based approach begins with an
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initialization phase, where k medoids are selected either randomly or through heuristic strategies from a dataset that has been en-
coded into quantum states using qubit representations. This quantum encoding enables parallelism and richer data representation,
laying the groundwork for improved clustering performance. Following initialization, the assignment step involves calculating the
Manhattan Distance between each qubit-encoded data point and the current medoids. The use of Manhattan Distance is particularly
suitable for binary-featured data, offering a straightforward metric for similarity measurement. This process enables the formation of
clusters that more accurately reflect the underlying structure of medical data within a quantum-enhanced framework.

d(a,b) =2 1|a; — bl 2)

Equation 2, where a; and b; These are measurement results from a qubit collapsing onto computational basis states. The
distances are computed classically after quantum measurement. Update Step: For each cluster, evaluate all non-medoid points as
candidate medoids by minimizing the total distance. The point with the lowest sum of distances becomes the new medoid. Iteration:
Repeat the assignment and update steps until the medoids converge (i.e., no further changes occur). Quantum simulation tools (e.g.,
Qiskit) are used to simulate qubit states, apply measurements, and evaluate the classical distance metrics.

2.4. Experimental Setup

The proposed model is implemented within a hybrid classical-quantum computing environment, leveraging the strengths of
both classical and quantum processing to optimize performance. In the classical phase, data preprocessing is performed using
Python libraries such as Pandas and NumPy, which are utilized for tasks like data cleaning, normalization, and feature selection.
These steps ensure that the input data is in a suitable format for quantum processing. The quantum phase is carried out using
IBM’s Qiskit SDK within the IBM Quantum Lab environment, where quantum circuits are constructed and simulated. The model
is configured with specific parameters, including the number of clusters k=2k = 2k=2, corresponding to the classification of data
into cancer and non-cancer categories. The algorithm runs for a maximum of 100 iterations or until the convergence criteria are
met, ensuring efficient optimization. Additionally, each qubit is measured 1,024 times (shots) to obtain statistically reliable output,
enabling probabilistic interpretation of quantum states. This hybrid approach allows the integration of classical data handling with
quantum state exploration, enhancing the robustness and accuracy of the clustering model.

2.5. Evaluation Metrics

To comprehensively evaluate the performance of the clustering model, several key metrics are employed to capture both the
quality of the clustering and the computational efficiency. Clustering Accuracy is used to measure the percentage of correctly grouped
instances when ground-truth labels are available, providing a direct indication of how well the model distinguishes between classes,
such as cancer and non-cancer. Additionally, the Silhouette Score is used to evaluate the internal quality of the clustering by measuring
the similarity of an object to its cluster compared to other clusters, with higher values indicating better-defined clusters. The Davies-
Bouldin Index (DBI) serves as another internal validation metric, where lower values reflect better cluster separation and compactness
by evaluating the average similarity between each cluster and its most similar one. Beyond clustering quality, the model’s execution
time is also analyzed to compare the computational efficiency between classical and quantum-enhanced implementations. This
comparison is crucial for determining the practical feasibility and scalability of the hybrid approach, particularly in contexts that
require the rapid processing of large biomedical datasets. By combining both accuracy-based and structure-based metrics along with
runtime analysis, the evaluation provides a well-rounded understanding of the model’s effectiveness and efficiency.

2.6. Post-Processing and Analysis

After the clustering process is completed, the resulting groupings produced by the classical K-Medoids algorithm and the
quantum-enhanced K-Medoids approach are systematically compared. The analysis focuses on three main aspects: prediction ac-
curacy, quality of the resulting clusters, and computational efficiency. By examining these differences, we aim to determine how
quantum-assisted clustering influences the performance of classification, particularly in complex datasets. Special attention is given
to evaluating whether quantum methods can offer practical advantages over classical techniques in terms of speed or accuracy. This
comparison is critical in assessing the overall feasibility and potential benefits of applying quantum computing in medical diagnostic
applications.

The medical records of lung cancer patients undergo a rule-based transformation process to ensure standardized representation
by converting the data into qubits, using values 0, 1, or a superposition of both simultaneously, following Dirac notation, namely bra
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7 > 7 and ket 7 < ”. This quantum computing approach aims to improve prediction accuracy. The transformation rules applied
to the lung cancer prediction data include: (1) age > 45 is assigned a value of 1, otherwise 0; (2) smoking status: yes=1, no=0;
(3) yellow fingers: yes=1, no=0; (4) anxiety: yes=1, no=0; (5) peer pressure: yes=1, no=0; (6) chronic disease: yes=1, no=1; (7)
fatigue: yes=1, no=0; (8) allergy: yes=1, no=0; (9) wheezing: yes=1, no=0; (10) alcohol consumption: yes=1, no=0; (11) coughing:
yes=1, no=0; (12) shortness of breath: yes=1, no=1; (13) swallowing difficulty: yes=2, no=1; (14) chest pain: yes=1, no=0; and (15)
lung cancer diagnosis: yes=1, no=0. This rule-based data transformation into quantum qubits enables the system to handle data in a
more flexible and precise manner, potentially improving the accuracy of lung cancer predictions. These rules ensure that lung cancer
medical record data is standardized and can be used effectively for further analysis and processing in a consistent format. The results
of coding into binary code are presented in Table 1.

Table 1. Lung Cancer Medical Record Dataset

No X1 X2 X3 X4 X5 X6 X7 Y
1 1 0 1 1 0 0 1 1
2 1 1 0 0 0 1 1 1
3 1 0 0 0 1 0 1 0
4 1 1 1 1 0 0 0 0
5 1 0 1 0 0 0 0 0
6 1 0 1 0 0 1 1 1
7 1 1 0 0 0 0 1 1
8 1 1 1 1 1 0 1 1
9 1 1 0 1 0 0 1 0
10 1 1 1 1 1 1 0 1
11 1 1 1 1 1 1 1 1
12 1 0 0 0 0 1 1 1
13 1 1 0 0 0 0 1 0
14 1 1 0 0 0 0 1 1
15 1 1 0 0 0 0 0 0
16 1 0 1 1 1 1 1 1
17 1 1 0 0 0 1 0 1
18 1 1 1 1 1 1 0 1
19 1 1 1 1 1 1 1 1
20 1 0 0 0 0 1 1 0

For example, one sample is taken from the dataset, specifically from instance number 1, which has been converted into the
binary code 101100101111111. Each digit in this binary sequence corresponds to a specific attribute related to lung cancer symptoms
and risk factors. The meaning of this code is as follows: the patient is aged 45 or older (1), does not smoke (0), has yellow fingers (1),
experiences anxiety (1), does not feel peer pressure (0), does not have a chronic disease (0), experiences fatigue (1), does not have
allergies (0), does not wheeze (0), consumes alcohol (1), has a persistent cough (1), experiences shortness of breath (1), has difficulty
swallowing (1), experiences chest pain (1), and is diagnosed with lung cancer (1). This binary format allows for standardized
encoding of diverse medical attributes into a compact digital representation that can be processed by both classical and quantum
systems. The binary data in Table 1 is then further transformed into a quantum format using qubit representations, as shown in Table
2. This transformation is essential for enabling probabilistic computations within quantum algorithms, which can potentially enhance
diagnostic precision and computational performance in analyzing complex medical datasets.

Table 2. Qubit Data for Lung Cancer Medical Record
No X1 X2 X3 X4 X5 X6 X7 .. Y

U
S
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Table 2 (continued)

No X1 X2 X3 X4 X5 X6 X7 ... Y

10

11

13

15

16

17

(continued on next page)
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Table 2 (continued)

No X1 X2 X3 X4 X5 X6 X7 ... Y
19 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
20 0 1 1 1 1 0 0 1
1 0 0 0 0 1 1 0

The development of the K-Medoids algorithm using quantum computing and the Manhattan Distance involves several key
steps. First, in the initialization step, k medoids are randomly selected from the dataset as the initial cluster centers, either randomly
or by a specific strategy. Next, during the assignment step, the Manhattan distance between each data point and every medoid is
calculated using the formula d(ay, by) = >."_, ||aq> > —|bp> > |, which sums the absolute differences of corresponding elements
in n-dimensional vectors a,. and by,. Each data point is then assigned to the cluster of the nearest medoid based on this distance.
Finally, in the update step, for each cluster, non-medoid points are considered as candidates for new medoids; the total Manhattan
distance from all cluster points to each candidate is computed, and the candidate with the lowest total distance is selected as the new
medoid. This process is repeated for all clusters until convergence is achieved.

3. RESULT AND ANALYSIS

The findings of this research present an alternative model for the K-Medoids clustering method, incorporating Manhattan
Distance calculations, which utilizes a quantum computing approach. The attribute values and medoid values are converted into
a quantum computing format. This study clustered lung cancer medical record data using the K-Medoids method with Manhattan
Distance calculations. The results show the same accuracy in clustering, namely 88%. The following are the results of testing epoch-1
data in Table 3 and epoch-2 in Table 4.

Table 3. K-Medoids Epoch-1 Test Results

C2  Shortest Distance ~ Cluster ~ Data Real =~ Description
FALSE
TRUE
TRUE
TRUE
TRUE
FALSE
FALSE
TRUE
FALSE
TRUE
FALSE
FALSE
FALSE
FALSE
TRUE
FALSE
TRUE
FALSE
FALSE
FALSE

—_

OO\]\]\]LI!\]LI!OOLI!LI\OOOO\]-J;OLI\LIILI\OOOO
R Y Y Y. BN Be e NV, e N e SANo N BEN B e lie o]
B Y. IV, BN RV I "N IV, B e Nle NNV, I SN e YLV IRV, BV, B e Rl e)
N = =N = = == = NN == == =N

O R, R, L, O R, O, P, P, O R, P, OO0~ —

o

11 8 8 1 TRUE
13 10 10 2 1 TRUE
Total of Shortest Distance 884 Accuracy 71%
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Table 4. K-Medoids Epoch-2 Test Results

C1 C2  Shortest Distance  Cluster Data Real Description
8 8 8 1 1 FALSE
6 6 6 1 1 FALSE
7 11 7 1 0 TRUE
5 3 3 2 0 FALSE
7 11 7 1 0 TRUE
8 10 8 1 1 FALSE
6 10 6 1 1 FALSE
5 5 5 1 1 FALSE
0 8 0 1 0 TRUE
8 0 0 2 1 TRUE
7 7 7 1 1 FALSE
9 9 9 1 1 FALSE
2 10 2 1 0 TRUE
7 9 7 1 1 FALSE
7 7 7 1 0 TRUE
9 7 7 2 1 TRUE
9 7 7 2 1 TRUE
7 1 1 2 1 TRUE
5 7 5 1 1 FALSE
4 10 4 1 0 TRUE
6 5 5 2 1 TRUE
8 7 7 2 1 TRUE

Total of Shortest Distance 961 Accuracy 88%

The simulation results of applying the K-Medoids clustering algorithm integrated with quantum computing principles demon-
strate promising performance in classifying lung cancer data. Specifically, the model achieves an accuracy rate of 88% at epoch
2, indicating a strong capability in distinguishing between cancer and non-cancer instances even with a limited number of itera-
tions. This improvement suggests that the hybrid classical-quantum approach contributes to more efficient convergence and better
optimization of cluster assignments. Moreover, the use of quantum-enhanced clustering appears to help the algorithm escape local
minima more effectively compared to purely classical methods. Detailed outcomes of the model’s performance at different stages of
training are presented, with the results from epoch 1 displayed in Table 5, and those from epoch 2 in Table 6. These tables provide
insights into how the clustering structure and predictive accuracy evolve as the model iterates, highlighting the potential of quantum
computing in supporting medical diagnostic tools.

Table 5. K-Medoids with Quantum Computing Epoch-1 Test Results

C1 C2 C1 (Decimal) C2 (Decimal)  Shortest Distance  Cluster Data Real Description
7 7 9.9 9.9 9.9 1 1 FALSE
L7} L7]
5 7
7.07 9.9 7.07 1 1 FALSE
_5_ _7_
6 10 8.49 10.77 8.49 1 0 TRUE
_6_ L 4 =
8 2
11.31 12.17 11.31 1 0 TRUE
18] 112

(continued on next page)
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Table 5 (continued)

C1 C2 C1 (Decimal) C2 (Decimal)  Shortest Distance  Cluster Data Real Description
5 H 7.07 11.4 7.07 1 1 FALSE
15 3
3 9
4.24 10.3 4.24 1 1 FALSE
_3_ _5_
10 6 14.14 10 10 2 1 TRUE
10 18]
9 7
12.73 9.9 9.9 2 0 FALSE
9] L7]
7 1
9.9 13.04 9.9 1 1 FALSE
_7_ _3_
8 6 11.31 10 10 2 1 TRUE
_8- _8_
2 10 2.83 10.77 2.83 1 1 FALSE
12 4
7 9 9.9 10.3 9.9 1 0 TRUE
L7] 5
2 10 2.83 10.77 2.83 1 1 FALSE
_2_ L 4 =
2 u 2.83 10 2.83 1 0 TRUE
_2_ L 3 -
8 8 11.31 10 10 2 1 TRUE
_8_ _6_
0 8 0 10 0 1 1 FALSE
_0_ _6_
8 10 11.31 14 11.31 1 1 FALSE
18] 4
8 6 11.31 10 10 2 1 TRUE
18] 8

(continued on next page)
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Table 5 (continued)

C1 C2 C1 (Decimal) C2 (Decimal)  Shortest Distance  Cluster Data Real Description
u 7 15.556 9.899 9.899 2 1 TRUE
111 L7]
13 7 18.385 9.899 9.899 2 1 TRUE
113 7]
Total of Shortest Distance 1172.38 Accuracy 60%

Table 6. K-Medoids with Quantum Computing Epoch-2 Test Results

C1 C2 C1 (Decimal) C2 (Decimal)  Shortest Distance  Cluster Data Real Description
8 8
11.31 10.00 10.00 2 1 TRUE
_8_ _6_
6 6
8.49 10.00 8.49 1 1 FALSE
_6_ _8_
7 u 9.90 11.40 9.90 1 0 TRUE
_7_ L 3 -
5 3
7.07 11.40 7.07 1 0 TRUE
15] 111
7 H 9.90 11.40 9.90 1 0 TRUE
_7_ L 3 -
8 10 11.31 10.77 10.77 2 1 TRUE
_8_ L 4 -
6 10 8.49 10.77 8.49 1 1 FALSE
_6_ L 4 =
5 5
7.07 10.30 7.07 1 1 FALSE
_5_ _9_
0 8 0 10 0 1 0 TRUE
_0_ _6_
8 0 11.31 14 11.31 1 1 FALSE
18] 14

(continued on next page)
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Table 2 (continued)

C1 C2 C1 (Decimal) C2 (Decimal)  Shortest Distance  Cluster Data Real Description

7 7 9.90 9.9 9.9 1 1 FALSE
_7_ _7_
) ? 12.73 10.3 10.3 2 1 TRUE
_9_ _5_
2 10 2.83 10.77 2.83 1 0 TRUE
2] 4
7 9

9.90 10.30 9.90 1 1 FALSE
_7_ _5_
7 7

9.90 9.90 9.90 1 0 TRUE
_7_ _7_
9 7

12.73 9.90 9.90 2 1 TRUE
_9_ _7_

This study successfully introduces an alternative approach to the traditional K-Medoids clustering algorithm by integrating
the Manhattan distance as a similarity metric with quantum computing techniques to enhance the analytical capabilities of medical
data processing. Specifically, attribute values and medoid representations derived from lung cancer medical records were converted
into qubit forms using Dirac notation, allowing the data to be processed in a quantum computing environment. This transformation
enables the system to capture probabilistic behaviors and explore complex data relationships more efficiently than conventional
methods. Clustering was then carried out using both the classical K-Medoids algorithm and its quantum-enhanced counterpart, with
each model tested and evaluated across two epochs to assess performance consistency and improvement over time. The results
demonstrate that the quantum-enhanced version achieves greater accuracy and efficiency in grouping patient data based on clinical
features, indicating a promising direction for future applications of quantum machine learning in the medical field. This hybrid
methodology not only advances the computational techniques used in disease prediction but also provides a framework for integrating
quantum logic into real-world health diagnostics.

In Epoch-1, the classical K-Medoids method achieved an accuracy of 71% with a total shortest distance of 884 (Table 3). In
Epoch-2, its performance improved to an accuracy of 88% with a total shortest distance of 961 (Table 4). On the other hand, the
quantum-based K-Medoids method initially achieved a lower accuracy of 60% in Epoch 1, with a total distance of 1172.38 (Table 5).
However, in Epoch 2, it achieved the same accuracy as the classical method—88%—albeit with a higher total distance of 1,359.06
(Table 6). This suggests that quantum-based clustering can match the accuracy of classical methods after adequate training, although
consistency and parameter stability remain areas for further refinement.

While both approaches achieved identical accuracy in the final epoch, performance variability across epochs indicates that the
quantum method may require more precise parameter tuning or stabilization mechanisms. Moreover, although accuracy serves as
the primary performance metric, further analysis is necessary to examine influencing factors such as dataset size, class distribution,
and initial medoid selection. The absence of statistical significance testing (e.g., p-values or confidence intervals) also limits the
interpretability of the performance comparison, raising questions about whether observed differences are meaningful or due to random
variations.

Additionally, no direct comparisons have been made with other clustering algorithms such as K-Means, DBSCAN, or quantum
alternatives like Quantum K-Means or Quantum Annealing. As a result, the relative performance and novelty of the proposed method
in the broader context of clustering algorithms remain unclear. Furthermore, the study does not yet discuss algorithmic complexity
or computational efficiency in quantum environments, which are crucial for assessing practical feasibility.
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In summary, the quantum-enhanced K-Medoids model demonstrates encouraging accuracy in clustering medical data, partic-
ularly for the classification of early-stage lung cancer. However, to validate its broader applicability, future research should place
greater emphasis on assessing the model’s stability across multiple runs and its scalability when applied to larger and more diverse
datasets. Evaluating its performance under varying data conditions, such as imbalanced classes or noisy attributes, will be essential
to understand its robustness. Furthermore, benchmarking the model against other quantum and classical clustering algorithms—such
as quantum k-means, spectral clustering, or DBSCAN—can provide deeper insights into its relative strengths and limitations. Inte-
gration with hybrid quantum-classical computing systems also presents a valuable direction for enhancing model accuracy, reducing
processing time, and enabling real-time decision support, particularly in critical domains such as medical diagnostics. This explo-
ration will help bridge the gap between experimental simulation and practical deployment in healthcare settings.

4. CONCLUSION

This study successfully integrates quantum computing into the K-Medoids clustering algorithm by incorporating Manhattan
distance calculations, demonstrating a comparable level of accuracy to its classical counterpart. The findings suggest that quantum-
enhanced clustering holds promise for improving data grouping performance in data mining tasks. However, several limitations must
be acknowledged. First, the scalability of the proposed method to larger and more complex datasets has not been evaluated, which
may impact its applicability in real-world scenarios. Second, the study does not address the technical challenges associated with
implementing quantum algorithms on current quantum hardware, including noise, qubit decoherence, and limited qubit availability.
Third, the practical deployment of this model, particularly in healthcare applications such as lung cancer prediction, remains unex-
plored and requires validation in real clinical environments. To enhance the robustness and practical relevance of the approach, future
research should focus on testing the method with high-dimensional, imbalanced, and larger-scale datasets. Additionally, exploring
hybrid quantum-classical algorithms and benchmarking against other clustering techniques may further optimize performance. Inves-
tigating the feasibility of integrating this model into decision support systems within clinical settings could also open new pathways
for real-world adoption. These directions will help ensure that the proposed quantum K-Medoids model transitions from theoretical
contributions to practical impact and broader usability.
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