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ABSTRACT

Early detection of grapevine leaf diseases is crucial for maintaining both the quality and quantity of
grape production. Manual identification methods are often ineffective and prone to errors. This re-
search aims to develop a precise and efficient method for classifying grapevine leaf diseases using
Contrast Limited Adaptive Histogram Equalization (CLAHE) and the DenseNet201 Deep Convolu-
tional Neural Network (DCNN) architecture. The research methodology involves collecting a dataset
of grapevine leaf images affected by black measles, black rot, and leaf blight alongside healthy leaves.
Following this, preprocessing is conducted using the CLAHE technique to enhance image quality.
Then, the processed data is trained with DenseNet201. Evaluation results indicate that the proposed
model achieves an overall accuracy of 99.61%, with high precision, recall, and F1-score values across
all disease classes. Receiver Operating Characteristic (ROC) curve analysis shows an Area Under the
Curve (AUC) of 1.00 for each class, reflecting excellent discriminatory ability. The loss and accuracy
curves illustrate consistent model performance without signs of overfitting. Additionally, the confu-
sion matrix confirms very low classification error rates. The developed model is effective and reliable
for identifying grapevine leaf diseases. Future research will focus on enhancing the dataset by incor-
porating more data optimizing hyperparameters, and developing field applications for real-time use.
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1. INTRODUCTION
Leaf disease classification is one of the major areas in modern agriculture aimed at identifying and effectively managing plant

diseases. In this context, grapes are a high-value crop that is susceptible to various types of leaf diseases. Early detection and accurate
classification of grapevine leaf diseases can benefit the growers by taking appropriate preventive measures, reducing yield losses, and
improving production quality [1]. Grapevine leaf diseases often have similar visual symptoms, such as leaf discoloration, spotting,
or deformation [2]. This makes manual classification by plant experts a challenging and time-consuming task. In addition, varying
lighting conditions, shadows, and image noise can affect classification accuracy [3]. Therefore, an automated method is needed that
can handle this variability efficiently and accurately when using deep learning techniques focused on image classification [4–8].

In developing this grapevine leaf disease classification, several relevant previous studies are discussed to provide an overview
of image processing and deep learning classification techniques used in plant disease detection. In the research by [9], the Adaptive
Snake Model technique was used to segment and identify grape leaf diseases. This model includes two segmentation phases: joint
segmentation for fast segmentation and absolute segmentation for better accuracy. Evaluations were performed using the PlantLevel
and PlantVillage datasets, and the results showed that these models outperformed various other methods in terms of performance
metrics such as Manhattan, Peak Signal-to-Noise Ratio (PSNR), Recall, Dice, and Jaccard. The research developed by [10] combines
the LoRa protocol with a deep learning-based computer vision system to transmit and identify grape leaf diseases using low-resolution
images. The pre-processing uses Low Power Longer Range (LoRa) parameters, fine-tuning of the Convolutional Neural Network
(CNN) model, and the Grad-CAM technique to visualize the CNN results. The evaluation shows that this model can transmit images
within LoRa bandwidth limitations and efficiently identify grape leaf diseases. The research conducted by [11], reviewed various
computer vision and soft computing techniques for automatically detecting plant diseases using leaf images. They evaluated modern
feature extraction techniques on various plant categories and concluded that computer vision techniques can detect and classify plant
diseases effectively.

Research conducted by [12], recommended an automatic classification method for grape leaf diseases using image analysis and
the Back Propagation Neural Network (BPNN) approach. The pre-processing technique includes Wiener filtering, wavelet transform
for denoising, segmentation using the Otsu method, and a morphological algorithm to improve the lesion’s shape. Features such
as perimeter, area, circularity, rectangularity, and shape complexity are extracted. The results show that the BPNN model has high
accuracy in detecting five grape leaf diseases. Research conducted by [13], developed a Generative Adversarial Network (GAN)
technique for image data augmentation of grape leaf diseases. The Leaf GAN model combines a generator with degressive channels
and an efficient discriminator. The results show that the Leaf GAN model produces images with prominent lesions and improves the
accuracy of disease identification by CNN up to 98.70% over the Xception model. In research conducted by [14], an integrated CNN
architecture called the United model, was developed to detect grape leaf diseases such as black rot, esca, and isariopsis leaf spot.
This model combines multiple CNNs to extract complementary features, resulting in an average validation accuracy of 99.17% and
a testing accuracy of 98.57%.

In research conducted by [15], this study compared DCNN models such as AlexNet, GoogLeNet, and ResNet-18 integrated
with Recurrent-Convolutional Neural Network (R-CNN) to identify three grape leaf diseases. In the experiments, AlexNet achieves
the highest accuracy of 95.65%, followed by GoogleNet with an accuracy of 92.29%, and ResNet-18 with an accuracy of 89.49%.
In the work of [16], fine-grained GAN is used to augment local spot area data in grape leaf images. This method is combined with
faster R-CNN to detect local spot areas, resulting in an identification accuracy of 96.27% on the ResNet-50 model. In the research
conducted by [17] To improve the accuracy of grape leaf disease detection, the Squeeze-and-Excitation Networks (SE), Efficient
Channel Attention (ECA), and Convolutional Block Attention Module (CBAM) attention mechanisms in the Faster R-CNN, You
Only Look Once (YOLOx), and Single Shot Multibox Detector (SSD) models are used. The results show that YOLOx+ECA has the
highest accuracy and the best real-time performance.

Research conducted by [18], proposed the GrapeGAN architecture to produce high-resolution images of grape leaf diseases.
GrapeGAN combines a U-net-based generator with residual blocks and a reorganization method, resulting in an identification ac-
curacy of up to 96.13% on VGG16 and InceptionV1 models. Meanwhile, research by [19], developed a lightweight CNN model,
GrapeNet, which uses residual blocks, Residual Feature Fusion Blocks (RFFBs), and CBAM to identify different stages of grape
leaf disease symptoms. GrapeNet achieves the best accuracy compared to other models with only 2.15 million parameters, demon-
strating high efficiency and performance. Research conducted by [20], SSD, Faster R-CNN, and YOLOx were used with attention
mechanisms to increase the accuracy of grape leaf disease detection. YOLOx+ECA shows the highest accuracy and best real-time
performance, providing valuable insights for automated disease detection in agricultural production.

Although several studies have used deep learning techniques and image processing to identify grape leaf diseases, several
gaps must be filled. Many studies still face challenges regarding input image quality, especially in poor lighting conditions or low-
resolution images. Data augmentation techniques such as GANs can help, but there is still room to improve the sharpness and clarity
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of the resulting images. In addition, many models require large and diverse training data to achieve high accuracy, which is not
always available. The application of attention mechanisms in detection models shows promising results, but more research is needed
to optimize the combination of these techniques with different CNN models. Finally, most studies focus on detecting single or limited
diseases, while accurately detecting multiple diseases in a single model remains challenging.

To overcome these challenges, we propose using image enhancement techniques with the Contrast Limited Adaptive Histogram
Equalization (CLAHE) method and classification using Deep Convolutional Neural Network (DCNN), specifically the DenseNet-201
model. CLAHE adaptively enhances image contrast by dividing the image into small tiles and applying histogram equalization to
each tile, thus reducing the effects of noise and shadows while enhancing details in leaf disease images. DCNNs are a class of
artificial neural networks that are highly effective in image recognition tasks. We choose DenseNet-201, a deep network architecture
known for its parameter efficiency and ability to capture intricate image features. The dense connectivity pattern of DenseNet-201
has demonstrated superior performance in image classification tasks, particularly for complex features often encountered in plant
disease detection [21]. This architecture facilitates feature reuse and propagation throughout the network, effectively mitigating
the vanishing gradient problem, which allows for training deeper networks with fewer parameters compared to architectures like
VGGNet or ResNet [22]. This is achieved through dense connections where each layer is connected to every subsequent layer,
further enhancing information flow and addressing the vanishing gradient issue.

The expected contributions of this research include: (i) Applying the CLAHE technique to grapevine leaf images to increase
visual contrast and detail, thereby helping to reduce the effects of shadows and noise, as well as clarifying disease symptoms on the
leaves, (ii) Using DCNN with the DenseNet-201 architecture, which is known for its high parameter efficiency and ability to capture
important features from images, and (iii) Integration of image enhancement techniques (CLAHE) with a powerful classification
model (DenseNet-201) capable of identifying grapevine leaf diseases with high accuracy.

2. RESEARCH METHOD

This section provides a concise description of the proposed method, an explanation of the dataset used, preprocessing tech-
niques (CLAHE), a detailed description of the DCNN model architecture (DenseNet201), and an overall evaluation of the model.
Figure 1 illustrates the proposed method for grapevine leaf disease classification.

Figure 1. Proposed method
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2.1. Data Acquisition
The data utilized in this study consists of grape leaf disease images sourced from the Plant Village dataset, comprising a total

of 14.132 images categorized into four distinct classes: healthy, black rot, black measles, and leaf blight [23]. This diverse dataset is
crucial for training and validating our proposed model, ensuring it can effectively differentiate between various conditions affecting
grape leaves. Table 1 illustrates the distribution of images across these classes, providing insight into the representation of each
category within the dataset, which is essential for achieving balanced and reliable classification results.

Table 1. Image Data Distribution

Classes Amount of Images

Diseases
black measles 1383

black rot 11390
leaf blight 889

Healthy leaves 470
Total 14132

2.2. Pre-processing
Preprocessing is an important step in processing image data before it is used in deep-learning models [24, 25]. This process

involves several techniques to improve the quality of the image, reduce noise, and supply data for model training. The three main
techniques used in pre-processing are resizing, normalization, and image enhancement with CLAHE.

All grape leaf images were resized to 224×224 pixels, which matches the input size required by Deep Convolutional Neural
Network (DCNN) architectures such as DenseNet201. The resized image is then normalized by dividing the pixel value by 255. This
normalization changes the pixel value range from 0-255 to 0-1, which helps to speed up the model training process and increase
convergence stability.

CLAHE is applied to the image to increase local contrast [26]. This method divides the image into several small parts (tiles),
performs adaptive histogram equalization on each part, and then recombines them. This technique helps to clarify details in the
image, especially in areas of low contrast, which is important for identifying disease characteristics on grape leaves. Figure 2 shows
the results of image enhancement using CLAHE.

Figure 2. Image enhancement using CLAHE

2.3. Image Augmentation
Image augmentation is a technique that enriches image datasets by applying various transformations to the original images.

This approach significantly boosts both the quantity and diversity of the dataset [27]. The primary objective is to enhance the model’s
robustness against variations that may arise in real-world data, thereby improving its ability to generalize effectively. By expanding
the diversity of the training data, the model becomes better equipped to recognize familiar patterns rather than simply memorizing the
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training examples, which helps mitigate the risk of overfitting. The data augmentation techniques utilized in this study are detailed
in Table 2.

Table 2. Image Augmentation

Technique Value Description
Rotation range 10 The image is randomly rotated within a range of 10 degrees (either CW or CCW).

Width shift range 0.02 The image is shifted horizontally (left or right) by a maximum of 2% of the image width.
Height shift range 0.02 The image is shifted vertically (up or down) by a maximum of 2% of the image height.

Zoom 0.05 The image is randomly enlarged or reduced within a 5% range.
Horizontal TRUE The image is mirrored horizontally.

The transformation of each technique in data image augmentation is clearly shown in Figure 3.

Figure 3. Image transformation with augmentation

2.4. Pre-trained with DenseNet201 model
DenseNet201 is a variant of the DenseNet (Densely Connected Convolutional Networks) architecture designed to improve

information flow and gradients throughout the network by using direct connections between each layer and every other layer [28].
In DenseNet, every layer receives input from all preceding layers, enabling feature reuse and mitigating the issue of the vanishing
gradient. DenseNet201 consists of a series of blocks, called Dense Blocks, connected by Transition Layers. Each Dense Block
contains several densely connected convolutional layers. Table 3 below shows details of the model architecture based on the output
of DenseNet201 and additional layers for classification.

Table 3. Summary of The Model

Layer (type) Output shape Param#
Input layer (224×224×3) 0

Densenet201 (functional) (7×27×1920) 18321984
Batch normalization (7×27×1920) 7680

Global Average Pooling 1920 0
Dense 128 245888

Output layer 4 516
Total params 18576068

Trainable params 250244
Non-trainable params 18325824
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Input layer with size (224, 224, 3), DenseNet201 as a pre-trained model with size (7, 7, 1920) and the number of parameters
of 18,321,984 Dense connections between convolution layers for feature reuse. Batch normalization for DenseNet201 output helps
stabilize and speed up training with 7.680 parameters. Global Average Pooling2D is used to flatten the convolution output into a
one-dimensional vector with output shape (1920) without additional parameters.

The results of this 1D vector are passed to the 128-unit fully connected layer using ReLU activation for nonlinearity with a
total of 245.888 parameters. The final dense layer for classification into four classes with softmax activation for probability output
with 516 parameters. The total number of parameters produced was 18,576,068, of which 250.244 were trainable parameters (only
new layers were added), and 18,325,824 were non-trainable parameters (parameters from DenseNet201 that were pre-trained and not
re-trained).

2.5. Evaluation
2.5.1. Confusion Matrix
The Confusion Matrix (CM) is the most commonly used method to figure out the achievement of classification models in

machine learning [29]. CM represents the comparison between predicted and actual values from the classification model The CM
can be used to calculate several important metrics such as f1-score, accuracy, recall, and precision, which help to figure out the
performance of the grapevine leaf disease model. Table 4 presents the configuration of the CM.

Table 4. Confusion Matrix

Actually positive Actually negative
Predicted Positive True Positives (TP) False Positives (FN)
Predicted Negative False Negatives (FN) True Negatives (TN)

Using these components, we can calculate several important metrics for evaluating Classification, including The accuracy of
the model’s predictions, which is calculated according to equation 1 and is represented as a percentage of correctly predicted samples.
Precision is calculated as Equation 2 and displays the percentage of positive data samples accurately predicted by the model. Recall,
also known as sensitivity or true positive rate, implies the percentage of positive samples that the model accurately predicts. Equation
3 can be used to calculate it. The F-1 Score describes the weighted average precision compared to the weighted average recall, which
can be represented by Equation 4.

Acc =
tp + tn

tp + tn + fp + fn
(1)

pre =
tp

tp + fp
(2)

recall =
tp

tp + fn
(3)

f1− score = 2
pre ∗ recall
pre+ recall

(4)

2.5.2. Loss and Accuracy Graphs
Loss and accuracy graphs are crucial visual instruments for evaluating machine learning models, particularly in supervised

learning tasks. The loss graph represents the model’s performance in minimizing the discrepancy between predictions and actual
values on the training data, where a steady decline indicates an effective learning process [30]. Meanwhile, the accuracy graph
illustrates the model’s ability to make correct predictions, with consistent improvement signifying enhanced performance. Analyzing
these two graphs enables the identification of potential issues such as overfitting or underfitting.

Interpreting loss graphs involves observing a steady decline (indicating positive learning progress), a plateau (suggesting
optimal performance or a local minimum), and an increase after several epochs (indicating overfitting). Comparing training and
validation loss curves is important; close alignment between the curves indicates good generalization, while divergence suggests
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overfitting or underfitting. Similarly, interpreting accuracy graphs involves observing steady improvement, a plateau, and a decline.
Comparing training and validation accuracy curves is also crucial for assessing the model’s generalization ability.

Several strategies can be applied to address identified issues. Overfitting can be mitigated through regularization, dropout,
data augmentation, or early stopping. Meanwhile, underfitting can be addressed by increasing model complexity, extending training
duration, or performing feature engineering. By carefully analyzing loss and accuracy graphs, machine learning practitioners can
optimize their model’s performance and ensure good generalization to new data.

2.5.3. Receiver Operating Characteristic (ROC) Curve
The ROC curve is a graphical representation that evaluates the performance of a binary classification model by plotting the

True Positive Rate (TPR) against the False Positive Rate (FPR) at various classification thresholds [31]. TPR measures the proportion
of actual positives correctly identified by the model (sensitivity), while FPR measures the proportion of actual negatives incorrectly
classified as positives. The ROC curve provides a comprehensive visualization of the model’s ability to distinguish between positive
and negative classes, unaffected by changes in class distribution or varying misclassification costs.

The Area under the Curve (AUC) of the ROC curve is a single summary metric that quantifies the model’s overall performance.
AUC ranges from 0 to 1, with higher values indicating better performance. An AUC of 0.5 suggests performance no better than
random guessing, while an AUC of 1 indicates perfect classification. The ROC curve and AUC enable the comparison of performance
across different classification models or model configurations and assist in selecting the optimal classification threshold based on the
desired trade-off between sensitivity and specificity.

2.6. Experiment Set Up
In this experiment, the grapevine leaf disease dataset was split into three categories: training set, validation set, and testing set,

with a ratio of 70%, 10%, and 20%. Figure 4 displays the distribution of each class in the training, validation, and testing datasets.

Figure 4. Data distribution for each class

The experiments in this research used the Python programming language and libraries, such as OpenCV, Sci-kit Learn, Ten-
sorFlow, and Keras. This research employed the following hardware and software configuration: a 9th generation Intel Core i7
processor, an NVIDIA GeForce GTX 1660 Ti graphics card, 16 GB of DDR4 RAM, the Windows 11 operating system, and the
Python programming language version 3.10.2. Model training parameters included a batch size of 32, an initial learning rate of
0.001, a maximum of 50 epochs with early stopping implemented, and the Adam optimization algorithm to accelerate convergence
and achieve optimal results. Table 5 lists the additional configuration parameters and hyperparameters for training.
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Table 5. Software, Hardware, and Hyperparameter Environment

Configuration item Value
CPU core i7 gen 9th
GPU NVIDIA GeForce GTX 1660 Ti
RAM DDR4 16 GB

OS Windows 11
Python 3.10.2

Batch size 32
Learning rate 0.001

Epoch 50
Early stopping TRUE

Optimizer Adam

3. RESULT AND ANALYSIS
3.1. Result

This section discusses the results of evaluating the grape leaf disease classification model using DenseNet201 with prepro-
cessing using the CLAHE technique. The evaluation uses various metrics, including classification reports, confusion matrices, and
Receiver Operating Characteristic (ROC) plots. The classification report provides detailed information about the model’s perfor-
mance in each class, including precision, recall, and F1 score. With this classification report, we can understand how well the model
detects each type of disease on grape leaves and identify weaknesses in the predictions.

Figure 5 shows the changes in loss values as the model is trained. At the beginning of training (epoch 0 to about epoch
5), there was a very fast decrease in loss for both training and validation data. This shows that the model learns quickly from the
data provided in the early stages of training. After around epoch 5, the loss value for the training data continues to decrease at a
slower rate and finally stabilizes near zero. This shows that the model continues to improve its predictions and reaches convergence,
where the decrease in loss becomes very small from one epoch to the next. The loss value for the validation data also shows a
consistent decrease, but slower than the training data, stabilizing around epoch 10-15. This indicates that the model did not suffer
from significant overfitting, i.e., it did not become so over-trained on the training data that it lost the ability to generalize to previously
unseen data.

Figure 5. Loss value while training

The loss value for validation data is generally higher than the loss value for training data. This is a common pattern because
the model is usually more accurate on data it has seen during training than on new (validation) data. The difference between training
and validation loss is not very large, which indicates that the model exhibits strong generalization ability and does not suffer from
overfitting the training data. At the end of the graph, both training and validation losses show stability, which means the model
has reached a balance and has not experienced major changes in the last few epochs. This shows that the model has been trained
sufficiently, and there is no need to continue training to avoid overfitting. Overall, the loss graph shows that the model has a good
training performance, with a rapid decrease at the beginning of training and stability reached at the end. The loss value for the
validation data is not too high compared to the training data, indicating that the model has good generalization capabilities and is not
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overfitting. This indicates that the training process was successful, and the resulting model performed well in the grape leaf disease
classification task.

Overall, the loss graph shows that the model has a good training performance, with a rapid decrease at the beginning of training
and stability reached at the end. The loss value for the validation data is not too high compared to the training data, indicating that
the model has good generalization capabilities and is not overfitting. This indicates that the training process was successful, and the
resulting model performed well in the grape leaf disease classification task.

Figure 6 shows the changes in accuracy values as the model is trained. At the beginning of training (epoch 0 to about epoch
5), there was a very rapid increase in accuracy for both training and validation data. This shows that the model learns quickly and
improves its ability to correctly classify data early in training. After the initial increase, the accuracy for the training data continued
to show small fluctuations but was generally stable and approached its maximum value (1.0) after about epoch 10. This indicates that
the model had learned the patterning in the training data very well and consistently. The accuracy for the validation data also shows
a stable pattern of improvement and is close to the maximum value, albeit with slight fluctuations. This demonstrates that the model
possesses strong generalization capabilities and does not suffer from overfitting the training data.

Figure 6. Accuracy value while training

The training and validation data accuracy is very close, especially after the first epoch. This shows that the model works well
on data already seen (training data) and new data (validation data). The small differences that exist between training and validation
accuracy are normal and indicate that the model does not experience significant overfitting. There were small fluctuations in the
training and validation data accuracy values. These fluctuations may be due to variations in the data batches used during training, but
overall the visible trend is one of improvement and stability. Overall, the accuracy graph shows that the model has excellent training
performance, with accuracy increasing rapidly in the early stages and stabilizing near its maximum value in subsequent epochs. The
high accuracy of validation data shows that the model has good generalization capabilities, so it can be relied upon to classify data
that has never been seen before.

Table 6 displays the classification report outcomes for four categories of diseases observed on grape leaves. By examining
the table, we can observe that the Precision value quantifies the accuracy of the model’s positive predictions. In other words, the
precision shows how many positive predictions are positive. The high precision values in all classes, especially ”Black Rot” (0.9987)
and ”Leaf Blight” (1.0000), show that the model very rarely gives false positive results.

Table 6. Classification Report of Grapevine Leaf Disease Model

Precision Recall F1-Score
Black measles 0.9924 0.9924 0.9924
Black rot 0.9987 0.9965 0.9976
Healthy 0.9388 0.9892 0.9634
Leaf blight 10.000 10.000 10.000
Accuracy 0.9961
Macro avg 0.9825 0.9945 0.9883
Weighted avg 0.9962 0.9961 0.9961
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Recall is a measure that determines how effectively a model detects all positive instances. High recall values for all classes,
especially for ”Leaf Blight” (1.0000) and ”Healthy” (0.9892), indicate that the model rarely misses true positive instances. The F1
score represents a balance between precision and recall. A good balance between precision and recall is indicated by high F1 scores
in all classes, with ”Leaf Blight” (1.0000) achieving perfect performance. Support shows the actual number of instances of each class
in the dataset. Most of the data consists of the class ”Black rot” (2314), indicating an imbalance in the data. However, the model
still shows excellent performance in all classes. The Macro Average provides a simple metrics average across all classes, giving
equal weight to each class without regard to frequency. The high Macro Average value (Precision: 0.9825, Recall: 0.9945, F1 Score:
0.9883) indicates that the model performance is consistent across classes. The weighted average takes into account the frequency of
each class. Since the class ”black rot” dominates the data set, the weighted average is almost equal to the individual metrics of this
class. The very high Weighted Average values (0.9961 for Precision, F1 Score, and Recall) confirm that the model behaves very well
on the dataset as a whole.

Overall, the model performed excellently in classifying grape leaf diseases using CLAHE and DenseNet201. The almost
perfect precision, recall, and F1 scores in all classes show that this model is very accurate and efficient in detecting leaf diseases. The
comprehensive accuracy value of 99.61% confirms the reliability of this model in real practice. This shows that using the CLAHE
preprocessing technique and DenseNet201 architecture is an effective choice for grape leaf disease classification.

Figure 7 shows a plot of the CM. The CM shows that the model has very high accuracy, especially for the classes ”Black rot”
and ”Leaf blight,” where almost all instances are predicted correctly. The number of prediction errors is very low for all classes.
For example, only two instances of ”Black measles” were incorrectly classified as ”Black rot” and vice versa. This error is very
small compared to the number of correctly predicted instances. The ”healthy” class had a very low error rate, with only one instance
misclassified as ”black rot.” This shows that the model can distinguish well between healthy and diseased leaves. There was no
prediction error for the ”Blight” class, indicating that the model accurately recognizes this class.

Figure 7. The CM of the model

Figure 8 displays the ROC curve of the model. The ROC (Receiver Operating Characteristic) graph shows the model’s perfor-
mance in classifying four types of grape leaf conditions. All ROC curves for the four classes are very close to the upper left corner
of the graph (true positive rate = 1, false positive rate = 0), indicating that the model has excellent classification performance for all
classes. The AUC value for each class is 1.00, ranging from 0 to 1, where 1 indicates perfect classification performance. An AUC
of 1.00 for each class indicates that the model is very good at distinguishing between positive and negative classes for all classes.
In this graph, the FPR is very low (close to 0), while the TPR is very high (close to 1) for all classes. This means that the model
has a very low error rate and a very high success rate in classifying the condition of grape leaves. The dashed diagonal line (from
the lower left corner to the upper right corner) shows the model’s performance making random predictions (AUC = 0.5). All ROC
curves are well above this line, indicating that these models are much better than models that make random predictions. This ROC
plot shows that the DenseNet201 model, trained using preprocessing techniques such as CLAHE, performs excellent classification
for detecting diseases on grape leaves. An AUC of 1.00 for all classes indicates that the model can accurately discriminate between
different conditions with minimal error.
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Figure 8. ROC curve of the model

3.2. Discussion

According to the Efficacy model, this model is very effective and can be used with high confidence to diagnose grape leaf
diseases. For generalization, a high level of accuracy indicates that the model has good generalization capabilities, which means that
this model will work well on data that has never been seen before. Overall, the model effectively classified grape leaf diseases, with
excellent performance in all classes. The low error rate indicates that this model is reliable for practical applications in detecting grape
leaf diseases in the field. Combining the results of this confusion matrix with other metrics, such as the classification report, ROC
curve, and model loss/accuracy, provides a comprehensive picture of the superiority and efficiency of the model in this classification
task.

4. CONCLUSION

This research presents a grape leaf disease classification model using the CLAHE technique and DenseNet201 architecture.
Based on the model performance evaluation, the overall accuracy and performance of the model were obtained, which reached
an overall accuracy of 99.61%, which shows excellent performance in grape leaf disease classification. The recall, precision, and
F1 scores for all classes are also very high, with the highest F1 score for the ”leaf blight” class (1.0000) and the lowest for the
”healthy” class (0.9634). ROC curve: The ROC curve shows that all classes have an area under the curve (AUC) of 1.00, which
illustrates perfect discrimination between different classes. This shows that the model effectively separates positive and negative
cases. Loss and Accuracy Graph: The Loss and Accuracy graph shows a good learning trend during the training process. The loss
values decreased, and the accuracy increased consistently with the training and validation data, with no signs of overfitting. The
confusion matrix results also show that the model has a very low error rate in classifying the four classes of grape leaf diseases.
Most instances were correctly classified, with only a few instances misclassified, further confirming the high accuracy of this model.
The overall evaluation of the model shows that the developed grape leaf disease classification is highly effective and reliable for
identifying different types of grape leaf diseases. The following steps can be taken for further improvement, including expanding
the data set by collecting more data from different conditions and grape varieties to boost the model’s generalization capability. To
enhance the model’s ability to handle variations in the input image, implement additional data augmentation techniques. A thorough
hyperparameter search will also be conducted to determine the optimal model configuration.
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