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ABSTRACT

Feature Selection is a crucial step in data preprocessing to enhance machine learning efficiency, reduce
computational complexity, and improve classification accuracy. The main challenge in feature selec-
tion for classification is identifying the most relevant and informative subset to enhance prediction
accuracy. Previous studies often resulted in suboptimal subsets, leading to poor model performance
and low accuracy. This research aimed to enhance classification accuracy by utilizing Recursive
Feature Elimination (RFE) combined with Dynamic Weighted Particle Swarm Optimization (DW-
PSO) and Support Vector Machine (SVM) algorithms. The research method involved the utilization
of 12 datasets from the University of California, Irvine (UCI) repository, where features were selected
via RFE and applied to the DWPSO-SVM algorithm. RFE iteratively removed the weakest features,
constructing a model with the most relevant features to enhance accuracy. The research findings
indicated that DWPSO-SVM with RFE significantly improves classification accuracy. For example,
accuracy on the Breast Cancer dataset increased from 58% to 76%, and on the Heart dataset from 80%
to 97%. The highest accuracy achieved was 100% on the Iris dataset. The conclusion of these find-
ings is that RFE in DWPSO-SVM offers consistent and balanced results in True Positive Rate (TPR)
and True Negative Rate (TNR), providing reliable and accurate predictions for various applications.
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1. INTRODUCTION
Feature selection is one of the most important methods in preprocessing data. Researchers in the field of statistics and machine

learning have been the focus of research for many years [1]. This method aims to increase the efficiency of machine learning,
minimize computational complexity, develop more generalizable models, and reduce the storage required. One of the methods that
proved to be the best feature selection method is Recursive feature elimination (RFE) [2]. RFE is a wrapper feature selection method
that evaluates the importance of features iteratively based on machine learning performance by recursively eliminating the least
important features until the best performance is obtained or the specified number of features is reached [3]. RFE is a feature selection
method that tries to select the optimal feature set based on the learned model [4]. RFE is important in improving classification
performance by iteratively removing irrelevant features, ensuring that only the most informative features are used in classification
model building [5]. Feature selection methods not only help simplify data representation but also contribute to improved classification
accuracy [6]. Classification is an important stage in machine learning that aims to place data into certain categories or labels based
on existing patterns or characteristics [7]. One of the most commonly used methods in classification is the Support Vector Machine
(SVM) [8]. SVM is a machine learning algorithm that carefully finds the optimal hyperplane to separate various data classes. The
SVM method uses kernel techniques to map the dataset to improve SVM performance [9]. The SVM model can adapt to both linearly
and non-linearly separable data, demonstrating its effectiveness. SVM also excels at handling data from different sources, leading
to increased accuracy in classification. The main advantage of SVM lies in its ability to capture non-linear relationships in the data,
resulting in high classification accuracy [10]. However, SVM requires careful parameter tuning to achieve optimal performance.
This tuning process can be complicated and time-consuming, especially when dealing with large or complex datasets. Therefore,
parameter optimization becomes an important step to improve SVM’s accuracy and overall performance [11].

Parameter optimization is the process of finding optimal values for certain parameters in a model or algorithm. Particle Swarm
Optimization (PSO) is used to search for the optimal input dataset by increasing the number of features until it reaches the maximum
limit. Each step involves creating a population where everyone is a randomized input feature dataset. These steps are repeated until
the maximum number of input features are reached, where SVM is used to evaluate and select the best dataset for the PSO-SVM
model. By applying PSO-SVM, the robust search algorithm can eliminate noise and irrelevant features in the input parameters,
making it suitable for handling low-damage intensity problems [12]. Furthermore, Dynamic Weighted Particle Swarm Optimization
(DWPSO) is an optimization algorithm developed by combining PSO with dynamic weight factors to improve SVM classification
accuracy and shorten experiment time. In the DWPSO algorithm, the linear reduction of the inertia weight (w) is decided upon with
careful consideration by the algorithm developers. DWPSO, as a variation of PSO that has proven effective over the years, utilizes this
approach to focus on diversity in the previous iteration and convergence in the last iteration. The linearly decreasing inertia factor in
DWPSO becomes a key parameter that greatly affects the success and evaluation of the function [13]. Several journals have discussed
different types of processing methods and stages, but different datasets and case studies have been used. According to [14], The RFE
algorithm was utilized to identify the most indicative features of the Chronic kidney disease (CKD) dataset. These selected features
underwent classification algorithms, including SVM, KNN, decision tree, and random forest. The parameters of each classifier were
adjusted to optimize classification performance, resulting in promising outcomes across all algorithms. Notably, the random forest
algorithm surpassed others, achieving perfect scores of 100% for accuracy, precision, recall, and F1-score. Subsequently, the system
underwent thorough evaluation through multiclass statistical analysis, revealing significant accuracy metrics of 96.67%, 98.33%, and
99.17% for SVM, KNN, and decision tree algorithms, respectively. Furthermore, research [15] on classifying patients with chronic
obstructive pulmonary disease (COPD) using SVM-RFE and LibSVM produced a model with an AUC value of 0.987 and an F1 score
of 0.978, distinguishing well between continuously managed and unmanaged patients. Another study [16] compared SVM and PSO-
SVM for landslide vulnerability mapping in Lueyang County, China, with the result that slope-based PSO-SVM gave the best results
with AUC values of 0.945 and 0.925 for training and validation datasets. Research [17] shows that the COVID-19 vaccine sentiment
analysis discussed uses machine classification techniques with the aim of improving classification performance in COVID-19 vaccine
sentiment analysis through the application of Information Gain Ratio (IGR) and Particle Swarm Optimization (PSO) to the Support
Vector Machine (SVM) model. The results showed that the integration of IGR and PSO significantly improved the performance of
the SVM model, with accuracy increasing from 0.794 (base model) to 0.837 and AUC increasing from 0.890 to 0.913.

Research related to DWPSO, among others, has been carried out [18] on developing a new feature selection method, FS-score,
which is combined with the DWPSO-SVM optimization algorithm to improve SVM classification accuracy and shorten experimenta-
tion time in various application domains. The results of the DWPSO-SVM algorithm show a significant improvement in classification
performance. DWPSO-SVM has better accuracy than most datasets’ basic PSO algorithm. For example, on the Vowel and Diabetes
datasets, the accuracy of DWPSO-SVM increased by 6.58% and 4.8%, respectively, compared to before. This algorithm also shows
a significant increase in True Positive Rate (TPR) and True Negative Rate (TNR) values, such as on the Sonar dataset with a TPR
value of 90% and TNR of 94.44%. Moreover, findings from multiple trials in [19] demonstrated that DWPSO achieved a higher
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accuracy by several percentage points than PSO after repeated testing. Based on the description and some related research, there is
a gap that has not been overcome by previous research, namely the evaluation of changes in DWPSO-SVM accuracy when using
different feature selection methods. The difference between this research and the previous one is that the RFE method is used to
assess its impact on the classification accuracy of DWPSO-SVM. This novel approach aims to address the research gap identified in
previous studies by investigating the effectiveness of RFE in enhancing DWPSO-SVM accuracy. This research aims to evaluate the
impact of different feature selection methods, particularly RFE, on the accuracy of DWPSO-SVM classification. By doing so, this
study seeks to contribute to advancing knowledge in machine learning by providing insights into the effectiveness of feature selection
techniques in improving classification accuracy. Additionally, the findings of this research can have practical implications in various
domains where accurate classification is essential, such as healthcare, finance, and marketing.

2. RESEARCH METHOD
This section discusses the proposed research method, which involves combining the RFE feature selection method with the

DWPSO algorithm to improve SVM classification accuracy and reduce overall experimentation time. The RFE method is used to
select key features and eliminate redundant or irrelevant features to improve data representation and increase classification algorithms’
accuracy and computational efficiency. This study uses a data set derived from the University of California, Irvine (UCI) repository,
which provides various data sets for machine learning research. The classification model we used with RFE and DWPSO-SVM
feature selection is depicted in Figure 1.

Figure 1. Research Methods

2.1. Dataset
The datasets used in this research are various datasets from the University of California, Irvine (UCI) repository. These

datasets cover different feature and data set characteristics, providing various data to evaluate the proposed method. The following is
an example of a dataset table from the UCI repository, as seen in Table 1.

Table 1. The Datasets from the UCI Repository

Dataset Feature Classes
Feature

Data Set Characteristics
Characteristic

Credit Card Australia 14 2 Categorical, Real Multivariate, Time-Series
Breast cancer 9 2 Categorical Multivariate

CMC 9 3 Categorical, Integer Multivariate
Diabetes 9 2 Categorical, Integer Multivariate, Time-Series

Credit Card Germen 24 4 Integer, Real Multivariate
Heart 14 2 Categorical, Integer, Real Multivariate

Ionosphere 34 2 Integer, Real Multivariate
Iris 4 2 Real Multivariate

Sonar 60 2 Integer Multivariate, Text
Vehicle 18 4 Real Multivariate, Integer
Vowel 3 6 N/A Image
Wdbc 30 2 Real Multivariate, Data-Generator
Wine 13 3 Integer, Real Multivariate

Dynamic Weighted Particle . . . (Irma Binti Syaidah)



630 r ISSN: 2476-9843

Next, min-max normalization is performed on the features in the dataset. Min-max normalization is a step in data preprocessing
where the numerical values of the attributes in the dataset are converted into a more general format. This process aims to produce
attribute values that fall within a common range, usually [0, 1] [20]. This is beneficial for improving the efficiency of the algorithm’s
training time and making the resulting model more stable. One commonly used normalization method is min-max normalization.
Min-max normalization is defined as Equation (1) [21]. Thus, x∗ is the value of x that has been normalized to be in the range of
values between 0 and 1. Where x is the original variable to be normalized, while xmin dan xmax are the minimum and maximum
values of variable x, respectively.

x∗ =
x−min(x)

max(x)−min(x)
(1)

2.2. Feature Selection with Recursive Feature Elimination
Feature selection is an information discovery tool that provides a deep understanding of the problem through analyzing the

most significant features. The purpose of feature selection is to improve the quality of the classifier by identifying a list of relevant
features, which at the same time can help reduce excessive computational burden [22]. The RFE method is used for feature selection.
The RFE method builds a machine-learning model on the dataset and evaluates the features with certain parameters, such as logistic
regression. Logistic regression is a statistical method used to understand the correlation between one or more dependent variables
and binary independent variables, which have values of 0 and 1. In logistic regression, the odds ratio is often used to evaluate the
strength of the relationship between dependent and independent variables [23].

With n dependent variables and binary dependent variables denoted as (xi, yi)(i = 1, 2, . . . , n), a logistic probability model is
obtained. In logistic regression, the logistic probability Equation (2). Where n is the number of predictor variables and π(x) is the
probability of success with a value of 0 ≤ π(x) ≤ 1. To make it easier to estimate the regression parameters, π(x) in Equation (2)
is transformed into logit form in Equation (3). The binary logistic regression model is used if the response variable or independent
variable produces two categories worth 0 and 1, so it follows the Bernoulli distribution Equation (4).

π(x) =
exp(β0 + β1x1 + β2x2 + . . .+ βnxn)

1 + exp(β0 + β1xi + β2x2 + . . . βnxn)
(2)

logit(π(x)) = log

(
π(x)

1− π(x)

)
= In

(
π(x)

1− π(x)

)
(3)

f(yi) = π(xi)
y(1− π(xi))

1−yi (4)

The solution to estimate the unknown parameters can use the Maximum Likelihood Estimation (MLE) method. This method
involves optimizing a likelihood function that matches the distribution of observed data. In logistic regression, MLE provides an
estimated value β, which shows how influential a feature is on the target. Systematically, the likelihood function for the binary
logistic regression model is in Equation (5). where, yi is the observation on the i-th, and π(xi) is the probability for the i-th prediction
variable. In determining the value of the estimated coefficient (β) that maximizes L(β) the derivative of β1, β2, . . . , βn then set to
zero, resulting in the following formulas shown in Equations (6) and (7):

L(β) = In[l(β)] =
n∑

i=1

{yiIn[π(xi)] + (1− yi)In[1− π(xi)]} (5)

n∑
i=1

[yi − π(xi)] = 0 (6)

And

n∑
i=1

xi[yi − π(xi)] = 0 (7)

Where β is the logistic regression coefficient, yi is the target/dependent variable, and xi is the corresponding feature/independent
variable. The odds ratio of the regression coefficient value (β) provides a measure of how much influence the independent variable
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has on the dependent variable. The odds ratio, or tendency ratio, is a figure that describes the comparison between the number of
individuals experiencing a specific event and the number of individuals not experiencing that event, both in the sample and the popu-
lation. The odds ratio (or(β)) is calculated by taking the exponential of the regression coefficient (β) value. To evaluate the likelihood
of success (π), the odds ratio value can be calculated using the following Equation (8).

or(β) = exp(β) (8)

2.3. Classification with the Support Vector Machine Method
Classification is a supervised learning method that analyzes datasets and creates models that categorize data into distinct classes.

The main goal is to develop a model that optimizes performance on the training data and can effectively classify new, unknown data.
One commonly used classification method in this research is the Support Vector Machine (SVM), which aims to separate multiple
classes by maximizing the margin between them [24]. SVM finds the optimal hyperplane that separates two classes by maximizing
the distance between the hyperplane’s margin and the data points. Originally developed as a linear classifier, SVM has been extended
to handle non-linear problems using the kernel trick and can now classify multiple classes [25]. SVM can be used to solve data
classification problems in linear and non-linear cases in Figure 2.

Figure 2. Hyperplane, maximum margin, and support vector machine linear

In Figure 2, SVM is considered linear if it can separate data into two different classes with at least one separator. Suppose there
are two different classes with at least one separating function. Suppose there are n data points (xi, yi) with each input xi dimension
d denoted by xiϵR

d, with the label for each class denoted by yiϵ−1,+1 for i = 1, 2, . . . , n. Assuming the two classes -1 and +1 can
be separated by a hyperplane, the hyperplane formula H0 u for linearly separable data is defined in Equation (9):

H0 : wTxi + b = 0 (9)

Where w is the weight vector, xi is the feature vector for the i-th data, and b is the bias. Suppose H1 Equation (10) and H2

(Equation 11) are the hyperplanes for the first and second class. The equation for each point on the class boundary level (support
vector) is in equation (12). where xi is the i-th data, yi is the class label of xi,w is the weight vector and b is a scalar or bias. So, the
generalized hyperplane Equations for two positive classes and two negative classes at the margin are shown in Equations (13) and
(14).

H1 : wTxi + b = +1 (10)

Dynamic Weighted Particle . . . (Irma Binti Syaidah)
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H2 : wTxi + b = −1 (11)

yi = wTxi + b (12)

wTxi + b = +1 (13)

wTxi + b = −1 (14)

With conditions

yi(w
Txi + b) ≥ 1, ∀i = 1, 2, . . . , n (15)

The margins of the separating plane are d+ and d−. Using the distance formula between points and lines, the distance between

the hyperplane H1 and h2 is
2

∥ w ∥
. The optimal solution finds the values of w and b that minimize the norm of vector w, in a

constrained optimization problem. So, this problem can be solved by the Lagrange method by introducing the Lagrange multiplier
αi ≥ 0 or each constraint, we can formulate the Lagrangian L as Equation (16). Where αi is the Lagr ange multiplier, w and b is a
parameter of the hyperplane.

L(w, b, α) =
1

2
∥ w ∥2 −

n∑
i=1

αi[(yi ∗ wTxi + b)− 1] (16)

In Figure 3, the SVM is modified by transforming into a new higher-dimensional vector space for data that cannot be linearly
separated. Then, the data is mapped with the transformation function to a new higher-dimensional space so that a separating hyper-
plane separates the data. (separating hyperplane) that separates the data according to its class, and the transformation function is a
kernel trick. The transformation function is the kernel trick. In the case of non-linear data, SVM uses kernel tricks by utilizing the
kernel function as in Table 2. In this research, the kernel function used is the Radial Basis Function (RBF).

Figure 3. Kernel Function with Non-linear Transformation

Table 2. Kernel Function

Kernel Type Formula
Kernel linear xT

i xj

Polynomial Kernel(P-SVM) K(xi, xj) = (xT
i xj + 1)d

Radial Basis Function (RBF) K(xi, xj) = exp

{
−
∥ xi − xj ∥2

2σ2

}
Tangent hyperbolic (sigmoid) kernel K(xj , xj) = βxT

i xj + βi
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2.4. Parameter Optimization with Dynamic Weighted Particle Swarm Optimization
To deal with instability, researchers used a feature selection method during the parameter optimization process. The concept

is to select a group of parameters that actively optimize the optimization process [22]. The author researched the DWPSO model.
DWPSO is one of the classic and highly effective variations of PSO because its advantages have persisted over the years. In DWPSO,
the inertia factor decreases linearly and focuses on diversity in the previous iteration and convergence in the last iteration [26]. The
selection of appropriate and correct inertia weights provides a balance between global and local exploitation and results in fewer
iterations, on average, to find a reasonably optimal solution [27]. The inertia weight w is the most influential parameter on the
success rate and function evaluation [26].

DWPSO-SVM is a more efficient approach to optimizing SVM parameters without the complexity of grid or genetic algo-
rithms. It uses a mobile search strategy throughout the area and can dynamically adjust its search strategy according to the current
situation. The evaluation is performed on various indices, with the dataset divided into training, monitoring, and testing sets to ensure
the optimized model can provide accurate prediction results independently. In PSO, the particles move in the search space based on
the Equation (17). Equations (17) and Equations (18) i = 1, 2, . . . N, i denotes the particle index in the swarm, N is the total number
of particles in the swarm, vi is the particle velocity, rand() is a function that generates a random number between 0 and 1, xi is the
particle’s current position in the search space, c1 and c2 are learning factors that usually have fixed values. The maximum limit of
vi is defined by vmax. If the speed of vi exceeds vmax during the iteration, then vi will be set back to vmax. In the context of PSO,
pbesti and gbesti refer to the best position ever achieved by particle i and the best position ever achieved by the swarm, respectively.
This equation is referred to as the elementary particle swarm Equation (19) [28]. Specifically expressed as follows:

vi = vi + ci ∗ rand() ∗ pbesti) + c2 ∗ rand() ∗ (gbesti − x)i (17)

xi = xi + vi (18)

vi = w ∗ vi + ci ∗ rand() ∗ pbesti − xi + c2 ∗ rand() ∗ (gbesti − x)i (19)

Compared to Equation (17), Equation (18) only undergoes modification in the first term. Here, w is referred to as the inertia
factor, and its value is non-negative. The magnitude of w affects particle movement in space. In the PSO algorithm, particles undergo
two types of learning: cognitive and social. Cognitive learning occurs when particles learn from their own experiences, while social
learning occurs when they learn from the experiences of other particles in the swarm. The results of cognitive learning are represented
as pbest, while the results of social learning are symbolized as gbest [29]. When its value is large, global optimization capability is
strong, but local optimization capability is weak, and vice versa. When its value is small, global optimization capability is weak,
but local optimization capability is strong. The introduction of w has significantly improved the performance of the PSO algorithm,
allowing it to flexibly adjust global and local search capabilities according to different actual situations. Equations (18) and (19) refer
to the overall standard PSO algorithm [19].

Next, the improved PSO algorithm with increased inertia weight and its utilization in optimizing SVM classification parameters
are highlighted. It also includes explanations of the model, algorithm, and dynamic inertia weight adjustment methods to adapt to
variational trends in equations. Meanwhile, the DWPSO-SVM formula that dynamically regulates the decrease of inertia weights

is expressed in Equation (20). Equation (20) reduces the inertial weight gradually through a logarithmic function
1

2
ln(e + (kz))

with k as the regulating factor. The inertia weight is initially large, and as z increases, the weight decreases. To maintain population
diversity and prevent premature convergence, w(t) is increased randomly. The use of the random function rand() improves the
search capability initially and avoids premature convergence, which improves the search accuracy. After conducting continuous
research on the value of inertia weights, Shi and Eberhart concluded that values in the interval [0.9,1.2] positively influence solution
improvement. Linearly decreasing inertia weights with [c1 = 2, c2 = 2] and w between 0.4 and 0.9. According to their statement,

wnew is the new inertial weight, which decreases linearly from 0.9 to 0.4, z =
t

T
[19].

Wnew(t) = Wmin +
Wmax −Wmin

2
+

1

In(e+ kz)2
+

(
Wmax −Wmin

2

)
∗ rand() (20)
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2.5. Evaluation of Classification Result
In Figure 4, an illustration of the calculation is shown in the confusion matrix in Figure 4. Equations (21) to (26) illustrate

the calculations performed in the confusion matrix. The TP (True Positive) parameter indicates the number of correctly positive
predictions of the actual class that are also positive. FP (False Positive) refers to the number of false positive predictions of an actual
class that is negative. TN (True Negative) reflects the number of negative correct predictions of actual classes that are also negative.
Meanwhile, FN (False Negative) describes the number of negative incorrect predictions of an actual positive class.

Figure 4. Confusion Matrix

Accuracy =
TP + TN

TP + FP + FN + TN
(21)

Pecision =
TP

TP + FP
(22)

Recall
TP

TP + FN
(23)

F1− score = 2× Precision×Recall

Precision+ recall
(24)

TPR = precision =
TP

TP + FP
(25)

TNR =
TN

TN + FP
(26)

3. RESULT AND ANALYSIS
This research aims to evaluate the impact of feature selection methods, especially RFE, on the classification accuracy of

DWPSO-SVM, as well as compare the results with the FS-Score method. This research also aims to overcome the limitations of
previous studies that have not evaluated changes in DWPSO-SVM accuracy when using different feature selection methods [18]. The
datasets used in this research come from the University of California, Irvine (UCI) repository. Some of the datasets used include
Credit Card Australia, Breast Cancer, CMC, Diabetes, Credit Card Germen, Heart, Ionosphere, Iris, Sonar, Vehicle, Vowel, Wdbc,
and Wine. Each dataset has its characteristics. For example, some datasets have categorical and real features, while others have a
combination of integer and real. Some datasets also belong to multivariate and time-series categories.
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3.1. Result of Feature Selection with RFE

The results of feature selection with RFE are shown in Table 3. Table 3 shows the change in classification accuracy along with
the number of features retained. Each dataset has different characteristics that affect its feature selection. For example, while the
Vowel dataset only selects 3 features. This variation shows the complexity and uniqueness of each dataset. The selection of different
features emphasizes the importance of properly analyzing the characteristics of each dataset to select the most relevant and informative
features. In addition, the classification accuracy varies between datasets, which means the performance of the classification model is
greatly influenced by the dataset used and the features selected. Thus, RFE is an effective feature reduction algorithm in selecting the
most relevant features for classification and can help improve the model’s overall performance.

Table 3. Optimal feature subset

Dataset Number of selected features Selected features
Credit Card Australia 7 4,5,8,9,10,13,14

Breast cancer 6 1,2,3,4,6,9
CMC 3 1,2,4

Diabetes 4 1,2,6,7
Credit Card Germen 7 1,2,3,5,15,17,19

Heart 11 2,3,4,5,7,8,9,10,11,12,13
Ionosphere 19 3,4,5,6,7,8,9,11,14,18,21,22,23,26,27,29,31,32,34

Iris 4 1,2,3,4
Sonar 14 1,11,12,16,21,31,36,37,44,45,48,49,51,52

Vehicle 11 1,3,5,7,8,9,10,12,14,17,18
Vowel 3 1,2,3
Wdbc 10 2,4,9,22,23,24,25,26,28,29
Wine 5 1,7,10,12,13

3.2. Evaluation of DWPSO-SVM

This experiment shows that the DWPSO-SVM algorithm completes the classification on each dataset with varying computation
time in Table 4. Table 4 shows that DWPSO-SVM exhibits diverse performance across various datasets, highlighting improvements
in classification accuracy and varying computational times. The computational time of the algorithm ranges from 0.89 seconds for the
Iris dataset to 50.69 seconds for the Vowel dataset. The variation in computational time is influenced not only by the complexity of
the dataset but also by the size of the feature subset used. Nevertheless, experiments demonstrate that DWPSO-SVM can effectively
handle various datasets, albeit with differing computational times, depending on the dataset’s complexity and optimal feature subset
size. Furthermore, there is a significant increase in accuracy after optimization. For example, the Breast Cancer dataset shows a
notable improvement from 58% to 76%, while the Heart dataset increased from 80% to 97%. Therefore, DWPSO-SVM proves
to be effective in enhancing classification accuracy and managing computational time across various datasets. The results from
testing before and after optimization, as seen in Figure 5, show consistent performance improvements after optimization. In every
experiment, the optimization always resulted in better performance than before.

Table 4. Evaluation on DWPSO-SVM

Dataset Accuracy before optimization Accuracy after optimization Time(s)
Credit Card Australia 85% 90% 4.14

Breast cancer 58% 76% 1.69
CMC 47% 62% 31.42

Diabetes 65% 79% 5.54
Credit Card Germen 69% 81% 9.02

Heart 80% 97% 4.68
Ionosphere 85% 97% 1.65

Iris 100% 100% 0.89
Sonar 81% 95% 1.62

Vehicle 39% 83% 6.50
Vowel 12% 90% 50.69
Wdbc 92% 95% 1.53
Wine 87% 98% 2.04

Dynamic Weighted Particle . . . (Irma Binti Syaidah)
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Figure 5. Model Accuracy Results

The data provided in Figure 5 illustrates significant improvements in each dataset after optimization. For instance, the accuracy
of the Australian Credit Card dataset increased from 85% to 90%, marking a 5% improvement. Similar enhancements were observed
across other datasets: Breast Cancer increased from 69% to 72%, CMC from 47% to 62%, Diabetes from 65% to 79%, Credit Card
Germany from 69% to 81%, Heart from 80% to 97%, Ionosphere from 85% to 97%, Sonar from 81% to 95%, Vehicle from 39%
to 83%, Vowel from 12% to 90%, WDBC from 92% to 95%, and Wine from 87% to 98%. These findings demonstrate that the
optimizations applied to the model effectively improved classification accuracy across various datasets, indicating consistent and
efficient enhancement techniques.

3.3. Evaluation
The confusion matrix is used as an evaluation to measure the model’s performance. The data splitting strategy approach is

done by dividing the dataset into training and testing data with a ratio of 90:10. In addition, the RBF (Radial Basis Function) kernel
is used in the SVM algorithm to map the dataset and improve the performance of the classification model. In this experiment, the
parameter C is 0.5, and gamma (γ) is 0.1. In Table 5, the highest results of the experiments conducted with accuracy, precision,
recall, and F1-Score reached 100%, which were calculated using Equations (21), (22), (23) and (24) .

Table 5. Experiment Result

Dataset Accuracy Precision Recall F1-Score
Credit Card Australia 90% 90% 90% 90%

Breast cancer 76% 73% 72% 71%
CMC 62% 66% 62% 62%

Diabetes 79% 79% 79% 79%
Credit Card Germen 81% 80% 81% 80%

Heart 97% 97% 97% 97%
Ionosphere 97% 95% 94% 94%

Iris 100% 100% 100% 100%
Sonar 95% 90% 90% 90%

Vehicle 83% 83% 83% 83%
Vowel 90% 90% 90% 90%
Wdbc 95% 95% 95% 95%
Wine 98% 98% 98% 98%

The findings of this study were that the use of RFE methods in combination with the DWPSO and SVM algorithms proved
effective in improving classification accuracy on various datasets. The results showed significant improvements in accuracy after
optimization using DWPSO-SVM, with consistent improvements observed on most datasets. RFE use in DWPSO-SVM yielded
consistent and balanced TPR and TNR values results. The results of this study are consistent with or supported by previous
research that uses optimization and feature selection methods to improve the performance of classification models. For example,
research conducted by [18] shows that using optimization algorithms can significantly improve the accuracy and consistency of the
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classification model. However, our research shows that the RFE method in DWPSO-SVM often gives more balanced TPR and TNR
values than the FS-Score method. Table 6 shows the experimental results and comparisons with previous studies to provide a clear
comparison. The evaluation criteria we use are accuracy, TPR, and TNR calculated using Equations (21), (25), and (26).

Table 6. Comparison with previous research

Dataset DWPSO-SVMRFE DWPSO-SVM FS-Score
Accuracy TPR(%) TNR(%) Accuracy TPR(%) TNR(%)

Credit Card Australia 90% 82% 94% 87% 88% 91%
Breast cancer 76% 58% 88% 74% 21% 94%

CMC 62% 68% 98% 54% N/A N/A
Diabetes 79% 63% 88% 79% 80% 87%

Credit Card Germen 81% 52% 93% 57% N/A N/A
Heart 97% 93% 100% 93% 88% 76%

Ionosphere 97% 91% 100% 97% 90% 100%
Iris 100% 100% 100% 98% N/A N/A

Sonar 95% 100% 86% 91% 90% 94%
Vehicle 83% 100% 100% 78% N/A N/A
Vowel 90% 92% 100% 84% N/A N/A
Wdbc 95% 95% 95% 95% N/A N/A
Wine 98% 100% 100% 64% 100% 100%

We also compared our experimental results with the methods discussed in [18]. Table 6 compares accuracy, TPR, and TNR
results between the DWPSO-SVM method with RFE and the DWPSO-SVM method with FS-Score of multiple datasets. The results
in Table 6 show that the DWPSO-SVM method with RFE tends to provide higher overall accuracy, with the highest accuracy value
occurring on the Iris dataset (100%). Meanwhile, the DWPSO-SVM method with FS-Score shows greater variation in results, with the
highest accuracy occurring on the Ionosphere dataset (97%). However, the DWPSO-SVM method with RFE is often more consistent
in providing balanced TPR and TNR values, especially on datasets such as Heart and Ionosphere. For example, on the Heart dataset,
DWPSO-SVM with RFE has a TPR of 93% and a TNR of 100%, while on the Ionosphere dataset, the TPR and TNR reached 91% and
100%, respectively. Therefore, using the RFE method in DWPSO-SVM shows that our proposed model can provide high accuracy.
Furthermore, the main objective of our research, which is to improve the accuracy of SVM by optimizing the parameters using the
DWPSO-SVM algorithm with RFE feature selection, has been successfully achieved.

4. CONCLUSION
This research shows that using the RFE method in combination with DWPSO and SVM algorithms has proven effective in

improving classification accuracy on various datasets. The results show a significant improvement in classification accuracy after
optimization using DWPSO-SVM, with consistent improvements observed on most datasets. Despite variations in computation
time and accuracy results between datasets, using RFE in DWPSO-SVM provided consistent and balanced results in TPR and TNR
values. The proposed model has the potential to provide more reliable and accurate predictions in various applications, such as disease
detection and disaster vulnerability modeling. However, this study has limitations, including limitations in the datasets used and the
use of default parameters in some cases. Experiments with various parameter configurations and a wider dataset are recommended
for future work to validate the model’s reliability. This research contributes to developing methods that can improve the performance
of classification models, which can be useful in various real-world applications, such as healthcare and disaster mitigation.
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