Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer

Vol. 22, No. 3, July 2023, pp. 627~638

ISSN: 2476-9843, accredited by Kemenristekdikti, Decree No: 200/M/KPT/2020

DOI: 10.30812/matrik.v22i3.3032

o 627

Performance Prediction of Airport Traffic Using LSTM and

CNN-LSTM Models

Willy Riyadi, Jasmir

Universitas Dinamika Bangsa, Jambi, Indonesia

Article Info

ABSTRACT

Article history:

Received May 01, 2023
Revised Juny 15, 2023
Accepted July 27, 2023

Keywords:

Accuracy Prediction

During the COVID-19 pandemic, airports faced a significant drop in passenger numbers, impacting the
vital hub of the aircraft transportation industry. This study aimed to evaluate whether Long Short-Term
Memory Network (LSTM) and Convolutional Neural Network - Long Short-Term Memory Network
(CNN-LSTM) offer more accurate predictions for airport traffic during the COVID-19 pandemic from
March to December 2020. The studies involved data filtering, applying min-max scaling, and dividing
the dataset into 80% training and 20% testing sets. Parameter adjustment was performed with different
optimizers such as RMSProp, Stochastic Gradient Descent (SGD), Adam, Nadam, and Adamax. Per-
formance evaluation uses metrics that include Mean Absolute Error (MAE), Mean Absolute Percent-
age Error (MAPE), Root Mean Square Error (RMSE), and R-squared (R2). The best LSTM model

Airport Traffic achieved an impressive MAPE score of 0.0932, while the CNN-LSTM model had a slightly higher
CNN-LSTM score of 0.0960. In particular, the inclusion of a balanced data set representing a percentage of the
COVID-19 base period for each airport had a significant impact on improving prediction accuracy. This research
LSTM contributes to providing stakeholders with valuable insights into the effectiveness of predicting airport
traffic patterns during these unprecedented times.
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1. INTRODUCTION

Airports serve as crucial terminals for aircraft takeoff, landing, and passenger transfer, playing a pivotal role in the transporta-
tion industry [1]. However, the COVID-19 pandemic in 2020 profoundly impacted the aviation sector, resulting in a significant
decrease in passenger numbers and the non-operation of an estimated 17,000 aircraft fleets from the peak period from March to
June [2]. Such fluctuations in air traffic are a characteristic feature of the aviation industry [3] and are time-dependent, making them
suitable for analysis as Time Series data [4]. The air transport industry has been focusing on traffic forecasting methodologies for
several decades, while formal studies and academic research on this topic have emerged relatively recently, around three decades ago
[5]. Various forecasting techniques have been developed to analyze Time Series data, including statistical methods, computational
intelligence, or a combination of both [6]. The primary goal of Time Series data analysis is to utilize historical observations to develop
accurate models that reflect the underlying structure of the series. These models enable the prediction and classification of future
events [7]. In recent years, deep learning methods and techniques have garnered significant attention in academic research and have
been successfully applied to real-world prediction problems, including the analysis of Time Series data. Among these techniques,
Long short-term memory (LSTM) and Convolutional Neural Networks (CNN) have emerged as popular and effective deep learning
models [8]. Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), including LSTM, have demonstrated
considerable improvements in handling Time Series data and have shown superior performance, particularly when dealing with raw
data [9].

Previous research has already been conducted on analyzing and predicting airports. One study, carried out by [10], utilized
a Bayesian Network (BN) approach to predict the level of congestion at airports and the reliability of flight delays. This research
achieved a performance rate of 70%. In another study conducted by [11], a machine learning approach was employed, utilizing
LightBGM, Multilayer perceptron (MLP), and Random Forests (RF) Classifier. This study aimed to evaluate the accuracy of pre-
dicting departure delays, arrival delays, and cancellations. The obtained accuracy score was above 0.794, indicating a high level
of accuracy. Furthermore, [12] conducted a study using a deep graph-embedded LSTM (DGLSTM) model, which demonstrated
higher prediction accuracy and robustness compared to the existing mainstream methods. Moreover, another study conducted by [13]
focused on accurately predicting flight delays using a CNN-LSTM model. This model achieved a classification accuracy of 92.39%
and an overall accuracy rate of 84%, surpassing the performance of several benchmark models. Additionally, [14] conducted a study
to reduce airport analysis prediction errors. They compared the prediction error of a Conv-LSTM model with a single LSTM and
found that the Conv-LSTM model reduced the prediction error by 11.41%. Furthermore, the study introduced an Att-Conv-LSTM
model, which further reduced the prediction error by 10.83% compared to the Conv-LSTM model.

In this paper, we present our main contributions, which involve comparing the performance of two powerful models, LSTM
(Long Short-Term Memory) and CNN-LSTM (Convolutional Neural Network Long Short-Term Memory), for predicting airport
traffic. Our analysis focuses on multivariate time series data, specifically the traffic to and from the airport represented as a percentage
of the traffic volume during a reference period. Our evaluation focuses on essential indices such as Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE), and R-squared (R2). By contrasting our models with
previous approaches that utilized autoregressive moving average (ARMA) models, we aim to assess their effectiveness thoroughly.
Based on the research cited in [15], the CNN-LSTM hybrid model proves to be superior to the LSTM model, exhibiting an average
reduction of 21.62% in prediction error. Additionally, as mentioned in [16], the CNN-LSTM hybrid model achieves an 18% decrease
in Mean Squared Error (MSE) compared to the LSTM model. Furthermore, according to [17], the CNN-LSTM model outperforms
other models, achieving an impressive MSE score of 0.37 and demonstrating its excellence when compared to the LSTM model.
Moreover, the other research highlights that both the CNN-LSTM and LSTM models outperform the CNN and the back-propagation
neural network (BPNN). On the other hand, [18] indicates that the performance of CNN or LSTM models falls short when compared
to the traditional SARIMA model.

While previous research has delved into comparing LSTM and CNN-LSTM models, our study introduces a novel aspect by
employing distinct datasets for predicting airport traffic patterns in forecasting airport percent of baseline during the COVID-19
period. By using different datasets, we aim to determine which model provides more accurate predictions for this critical application.
One of the challenges in this research lies in the imbalanced nature of the airport dataset across different countries. To address this
issue, we took the initiative to create the average percentage of airport baseline daily for four representative countries: the USA,
Canada, Chile, and Australia. We employed various optimizers, including RMSProp, Stochastic Gradient Descent (SGD), Adam,
Nadam, and Adamax, in fine-tuning the model parameters, and they can significantly impact the predictive accuracy. The findings of
this research have significant implications for airport management and various stakeholders in making informed choices during these
unprecedented times.
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2.  RESEARCH METHOD

This quantitative research data is analyzed using numerical methods to quantify patterns, encompassing data collection from
Kaggle repositories, data preprocessing including data filtering and MinMaxScaler, data partitioning into train 80% and test set
20%, data modeling using LSTM and CNN-LSTM, parameter tuning using RMSProp, Stochastic Gradient Descent (SGD), Adam,
Nadam, and Adamax, and performance evaluation using metrics such as Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), Root Mean Squared Error (RMSE) and R-squared (R2). The process and outcomes of these stages are illustrated in
Figure 1.

- Data Preprocessing

* Data Filtering Train/Test Split
Dataset * MinMaxScaler 80:20

Performance Parameter Tuning
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Figure 1. Research Stages

2.1. Dataset

In this study, we utilize a dataset from March 16, 2020, to December 12, 2020, and readily accessible on Kaggle [19]. The
dataset comprises a single numerical attribute that can be transposed, and it includes a total of 7247 baseline data points with daily
aggregation in Table 1.

Table 1. Dataset Describe Transpose

count mean std min 25% 50% 75% max
PercentOfBaseline  7247.0  66.651442  22.134433 0.0 530 67.0 84.0 100.0

2.2. Data Preprocessing

In this stage of the research, the focus is on cleaning irrelevant data using data filtering and performing normalization using
techniques such as feature scaling or min-max scaler. Normalization aims to adjust the range of independent variables or features
within the data so that they fall between 0 and 1 [20]. This process helps ensure that the data values for each attribute are in a
standardized and consistent range, as in Equation (1):

, x—min()
v mazx(x) — min(z) M

2.3. Train/Test Split

The dataset used in this study is divided into training data and testing data through the Train/Test Split process. In this case, the
dataset is split in an 80/20 ratio. Due to the imbalanced nature of the airport dataset across different countries, we took the initiative
to create the average airport baseline daily on the basis for USA, Canada, Chile, and Australia.
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2.4. Data Modeling

The LSTM component of the model consists of two layers. The dropout layer plays a crucial role in mitigating overfitting. In
the final stage, the fully connected layer or dense layer utilizes the spatial correlation patterns extracted from the previous layers to
predict future values. By leveraging these patterns, the model can make accurate estimations about the forthcoming values, facilitating
its ability to forecast future outcomes as illustrated in Figure 2 :
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Figure 2. Flow diagram CNN-LSTM model

The CNN-LSTM model comprises a Conv1D layer and an AveragePooling1D layer. The purpose of these layers is to capture
relevant patterns and features in the input data. Additionally, to prevent overfitting, a Dropout layer is included. The LSTM component
of the model consists of two layers. In the final stage, the fully connected layer or dense layer utilizes the spatial correlation patterns
extracted from the previous layers to predict future values. By considering these patterns, the model can make informed estimations
regarding the future values of the time series, as illustrated in Figure 3.
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Figure 3. Flow diagram CNN-LSTM model

2.5. Parameter Tuning

We utilize various optimization algorithms to enhance performance in deep learning models, RMSProp (Root Mean Square
Propagation) is an optimization algorithm that aims to adjust the learning rate based on the magnitude of recent gradients, Stochastic
Gradient Descent (SGD) is a fundamental optimization algorithm which updates the model parameters by taking small steps pro-
portional to the negative gradient of the loss function, while Adam (Adaptive Moment Estimation) maintains a running average of
past gradients and their squares, and uses this information to update the model parameters, Nadam is an extension of Adam that
incorporates Nesterov accelerated gradient (NAG) into its update rule and calculates the gradient using an intermediate point ahead
of the current parameters, which helps the algorithm to converge faster, and Adamax is another variant of Adam that uses the infinity
norm (maximum absolute value) of the gradients and uses the exponentially weighted infinity norm to update the parameters.

2.6. Performance Metric

To evaluate and compare the performances of the implemented methods, Equation (2) is used to calculate MAE from a sample
of N data points. Assume y; and g; are variables of paired observations that express the same phenomenon.

1 .
MAE:NZ?LHM—ZH 2
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Equation (3) is used to calculate the MAPE. MAPE is a measure prediction accuracy of a CNN-LSTM method in statistics, for
example, in trend prediction. Where y; is the actual airport baseline value and ¢; is the predicted value N.

100 i — Ui

MAPE = n_
N =1 Yi

Equation (4) is used to calculate the RMSE. If g; is a vector of n predictions generated from a sample of N data points on all airport
baseline variables, and y; is the vector of the observed variable of the airport baseline being predicted.

1

RMSE =vVMSE = N

SN (yi — )2 )

Equation (5) is used to calculate the R-squared represents the coefficient of how well the predicted values fit §§ compared to the
original values y;. The value from O to 1 is interpreted as percentages. The higher the value is, the better the model is.

&)

3. RESULT AND ANALYSIS
3.1. Dataset

Based on the 7247 datasets, we have summarized the number of data entries for different countries. In the United States of
America (USA), we have 4441 data entries. For Australia, the dataset contains 257 data entries. In Chile, we have 238 data entries;
in Canada, there are 2311. These numbers can be visualized in Figure 4.
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Figure 4. Traffic volume by country

3.2. Data Preprocessing

To ensure the relevance and accuracy of the analysis, a filtering process was applied to eliminate irrelevant data. The results of
this filtering process are presented in Table 2, which contains only the data deemed relevant for the analysis.

Table 2. Data Filtering

Before After
’AggregationMethod’, ’Date’, ’Version’, ’Airport-  ’Date’, ’AirportName’, 'PercentOfBaseline’, City’,
Name’, ’PercentOfBaseline’, ’Centroid’, ’City’, ’State’, *country’

*State’, *1SO_3166_2’, *country’, ’Geography’

The MinMaxScaler rescales the data features, such as attributes or variables, to a specified range, typically between 0 and 1.
This scaling process maintains the relative relationships between the values of different features, ensuring that the data retains its
original distribution and structure, presented in Table 3.

Performance Prediction of ... (Willy Riyadi)
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Table 3. Data Scaling Example

Original Value  Scaling Value

88.058824 1.0

87.823529 0.99732038
81.705882 0.92765031
73.764706 0.8372132

3.3. Train/Test Split

Considering the imbalanced distribution of data entries across various countries in the airport dataset, we took the initiative to
address this issue by creating an average airport baseline on a daily basis. This process involved using the Pandas dataframe.groupby().mean()
function. The dataset was divided into an 80/20 ratio, and the mean values were calculated for the USA, Canada, Chile, and Australia,
resulting in average baseline values, presented in Table 4.

Table 4. Train/Test Split

Country Data Training (80%) Data Testing (20%) Total (100%)
United States of America 210 52 262
Chile 190 48 238
Canada 210 52 262
Australia 206 51 257

3.4. Data Modeling

In this LSTM model, we implemented a 2-layer architecture. The initial layer consisted of 64 units with return sequences
set to True, allowing it to produce outputs for each time step. To mitigate overfitting, we incorporated a dropout rate of 0.2, which
randomly set a portion of the input units to O during training. The second layer of the LSTM model consisted of 32 units with return
sequences set to False. During training, we optimized the models using the Rectified Linear Unit (ReLU) activation function, which
helps the model capture non-linear relationships in the data. We trained the models for a total of 60 epochs, with a batch size of 64.
For a visual representation of the USA LSTM model architecture, please refer to Figure 5.
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Figure 5. LSTM model

In the CNN-LSTM model, we utilized a Conv1d layer with 64 filters. The kernel size was set to 3, the padding was set to same,
and the strides were set to 1. This convolutional layer helped extract relevant features from the input data. Furthermore, we included
an AveragePooling1D layer with a pool size of 32, strides of 1, and padding set to same. This pooling layer helped down-sample
the data and capture important temporal patterns. To prevent overfitting, we incorporated a dropout rate of 0.2. During training, the
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dropout layer randomly sets input units to 0. In the LSTM layer, we utilized 64 units with return sequences set to True. Additionally,
we added another LSTM layer with 32 units, where return sequences were set to False. We employed the Rectified Linear Unit
(ReLU) activation function throughout the training process. We trained the models for a total of 60 epochs, with a batch size of 64.
For a visual representation of the USA CNN-LSTM model models for a total of 60 epochs, with a batch size of 64. For a visual
representation of the USA CNN-LSTM model architecture, please refer to Figure 6.

mode] US4 ComdlSTH = Sequential
msdal A ComdliTH.sddComibFileera=id, kirnal flse=3, atridsp=i, setlvatlon='relu', padding="1ame’, Input_shege=(X_tralnl.shape[1],1
mode]_URa_Coml 5TH. add (Averageroolingldipool_size=1, stridessl, padding='sese

s ectivetion="relu’, returs_seqeences = True
e scthvations"relu”; returs_segeences = False

Figure 6. LSTM model

3.5. Performance Metric

The performance of the models was evaluated using various metrics, including Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), Root Mean Square Error (RMSE), and R-Squared. Table 5 presents the performance metric scores for dif-
ferent countries: the USA, Canada, Chile, and Australia. The scores were calculated using different optimizers, including RMSProp,
Stochastic Gradient Descent (SGD), Adam, Nadam, and Adamax. By analyzing these scores, we can assess the effectiveness of the
models in predicting the airport percentage of baseline for each country.

Table 5. Performance of ReLu Activation in Different Optimizers

Country Model Optimizer MAE MAPE RMSE R2
RMSprop ~ 0.0505  0.0927  0.0822  0.4404
SGD 0.0716  0.1247  0.1021  0.1350
LSTM Adam 0.0532  0.0968 0.0842  0.4126
Nadam 0.0516  0.0926  0.0806  0.4617
Adamax 0.0524  0.0932  0.0804  0.4635
RMSprop  0.0516  0.0961  0.0857  0.3910
SGD 0.0711  0.1243  0.1023  0.1316
CNN-LSTM Adam 0.0507  0.0947 0.0849 0.4018
Nadam 0.0513  0.0936  0.0827 0.4324
Adamax 0.0561  0.0960  0.0801  0.4675
RMSprop  0.0713 03303  0.1169  0.5771
SGD 0.1393  0.4608  0.1828  -0.0341
LSTM Adam 0.0730 03370  0.1179  0.5696
Nadam 0.0767  0.3535 0.1213  0.5451
Adamax 0.0738 03351  0.1185  0.5658
RMSprop 0.0742  0.3221 0.1136 0.5639
SGD 0.1168 04271  0.1552  0.1858
CNN-LSTM Adam 0.0750  0.3181 0.1147 0.5549
Nadam 0.0763 03355  0.1165  0.5408
Adamax 0.0759 03452 0.1152  0.5511

United States of America (USA)

Australia

Performance Prediction of ... (Willy Riyadi)
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Country Model Optimizer MAE MAPE RMSE R2
RMSprop  0.0886  0.4456  0.1146  0.4364
SGD 0.1176 ~ 0.5387  0.1501  0.0321
LSTM Adam 0.0880  0.4440 0.1119  0.4623
Nadam 0.0897  0.4401 0.1144 0.4378
Adamax 0.0890  0.4588  0.1149  0.4334

Chile RMSprop  0.0881 04302  0.1125 04571
SGD 0.1165 0.5344  0.1486  0.0514
CNN-LSTM  Adam 00874 04422  0.1130  0.4522
Nadam 00877 04325 01122  0.4599
Adamax  0.0872 04382  0.1119  0.4623
RMSprop  0.0963  0.1505  0.1391  -0.0316
SGD 0.0989 01555  0.1413  -0.0647
LSTM Adam 00989 0.1523  0.1382  -0.0182
Nadam 00979  0.1505  0.1368  0.0023
Adamax  0.0954  0.1491  0.1375  -0.0079
Canada

RMSprop  0.1043  0.1553  0.1347  0.0324

SGD 0.1005  0.1565  0.1403  -0.0496

CNN-LSTM Adam 0.1032  0.1554  0.1400  -0.0452
Nadam 0.1098  0.1583  0.1352  0.0260

Adamax 0.1080  0.1582  0.1379  -0.0130

Table 5 displays the performance of different optimizers for LSTM and CNN-LSTM models in various countries. Evaluating
the models based on the R-squared metric, we observed the following trends: For the USA LSTM and CNN-LSTM models, the
Adamax optimizer achieved better performance. For the Australia LSTM model and CNN-LSTM model, the RMSprop optimizer
showed superior results. In the case of the Chile LSTM model, the Adam optimizer outperformed other optimizers. For the Chile
CNN-LSTM model, the Nadam optimizer demonstrated better performance. The Canada LSTM model achieved better results with
the Nadam optimizer. Finally, for the Canada CNN-LSTM model, the RMSprop optimizer yielded superior performance. Finally, for
the Canada CNN-LSTM model, the RMSprop optimizer yielded superior performance.

The results of the LSTM and CNN-LSTM models, utilizing the optimizers with the best performance based on the R-squared
score tests, are visually depicted in Figure 7 to Figure 10. These figures provide a graphical representation of the model predictions
and actual airport percentage of baseline. In these visualizations, the red line represents the actual values of the airport percentage of
baseline. The blue line corresponds to the predictions obtained from the LSTM model, while the green line represents the predictions
derived from the CNN-LSTM model. By analyzing these graphical representations, we can assess the accuracy and effectiveness of
the chosen optimizers in predicting the airport percentages of baseline. Comparing the predicted lines to the actual values allows us
to evaluate how well the models capture the underlying patterns and trends in the data.
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Figure 7. United states of America (USA) prediction result
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The USA dataset gained our highest-performing LSTM model in this research and achieved an impressive MAPE score of
0.0932. The CNN-LSTM model for the USA had a slightly higher MAPE score of 0.0960. On the other hand, the Chile dataset
gained the lowest MAPE score achieved by the CNN-LSTM model, which achieved an impressive score of 0.4382. Conversely, the
LSTM model for Chile had a slightly higher MAPE score of 0.4440. Table 6 compares our results with previous research, utilizing
the Mean Absolute Percentage Error (MAPE) metric. A lower MAPE score suggests more accurate predictions.

Table 6. MAPE Score Result Comparison with Previous Research

Model MAPE Score

LSTM [17] 35.78
CNN-LSTM [17] 31.84

LSTM [21] 20.2824

CNN-LSTM [21] 20.8055
LSTM [22] 44.06
CNN-LSTM [22] 40.38
LSTM (USA) 0.0932
CNN-LSTM (USA) 0.096

4. CONCLUSION

After analyzing a total of 7,247 recorded baseline data points, we calculated the average data for each country on the corre-
sponding dates, resulting in 1,019 baseline data points. However, it is important to acknowledge that the prediction performance
varied across different countries: the USA, Canada, Chile, and Australia. This variation can be attributed to the imbalanced dataset
and the limited data availability, with only around ten months of data for each airport. The USA demonstrated the best prediction
performance among the countries analyzed, while Chile demonstrated the lowest prediction performance. Our best LSTM model
achieved a MAPE score of 0.0932, while the CNN-LSTM model achieved a slightly higher MAPE score of 0.0960. These scores
indicate a relatively low average percentage error in the predictions. To enhance the accuracy of future predictions, we recommend
conducting further research addressing the data imbalance issue. Incorporating a more balanced dataset for each country, with a more
comprehensive and representative sample of data, can potentially lead to more reliable and precise prediction results.
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