Penilaian Kalkulus Berdasarkan Fuzzy Inference System (StudiKasus di STMIK BumigoraMataram)
Keywords:
FIS, mamdani method, achievement, decision making
Abstract
The aims of this research was to take a decision in determining student achievement of Informatics Engineering Program STMIK BumigoraMataram on first semester academic year 2016/2017 in calculus based on Fuzzy Inference System (FIS) with mamdani method. The mamdani method was included in the softcomputing category which was a branch of fuzzy logic. This method can process data in linguistic form or data that was uncertain. Stages of the mamdani method include fuzzification, application of implication function, rule composition, and defuzzification. The input data used consisted of assignment value, mid exam, and final exam which was the reference point on S1 Informatics Engineering Department STMIK BumigoraMataram. The data were obtained by using random sampling proportion technique, that was taking 25% from 210 students. The data was analyzed using matlab program aid based on the next method of mamdani, and the result will be compared with manual calculation to determine a decision about student achievement of S1 Program of Informatics Engineering.The results of this research indicated that FIS with mamdani method can be used to build decision support system of student achievement assessment. Furthermore, the calculation obtained was there are 32 differences in student achievement outputs and 19 outputs of the same student achievement. This difference was due to the fuzzy rating system using many strict rules, so the calculation was more accurated.
References
[1] Sugihartonodkk.2007. PsikologiPendidikan. Yogyakarta: UNY Press.
[2] Vercellis, C. 2009. Business Intelligence: Datamining and Optimization for Decision Making. Chichester: John Wiley & Sons.
[3] Kusumadewi, Sri dan Purnomo, H. 2004. Aplikasi Logika Fuzzy untuk Pendukung Keputusan. Yogyakarta: GrahaIlmu.
[4] Rahmadi, M. A. danMustafidah, H.2014. InferensiFuzzy untukMengetahuiPengaruhMotivasiBelajard anLingkunganBelajarterhadapPrestasiBelaj arMahasiswa.Jurnal JUITA ISSN: 2086- 9398, Vol. III Nomor 1.
[5] Saxena, N. and Saxena K. K. 2010Fuzzy Logic Based Students Performance Analysis Model Educational Institutions. Vivechan International Journalof Research: Vol.1.
[6] Sari, R. M. dan Abadi, A. M. 2015.Aplikasi Fuzzy Inference System dalam Penilaian Prestasi Mahasiswa. Seminar Nasional Matematika dan Pendidikan Matematika UNY. ISBN. 978-602-73403-0-5.
[7] Azmania, Z. F., Bu’ulolo, dan Siagian P. 2013.Penggunaan Sistem Inferensi Fuzzy untuk Penentuan Jurusan di SMA Negeri 1 Bireuen. Medan: Saintia Matematika. Vol. 1, No. 3, pp. 233–247.
[8] Assegaf, Y. N. dan Estri, M. N. 2012. Aplikasi Fuzzy Inference System Metode Mamdani untuk Rekomendasi Pemilihan Bidang Kajian pada Mahasiswa Program StudiMatematika UNSOED. Vol 4 No. 2, pp. 253-26
[2] Vercellis, C. 2009. Business Intelligence: Datamining and Optimization for Decision Making. Chichester: John Wiley & Sons.
[3] Kusumadewi, Sri dan Purnomo, H. 2004. Aplikasi Logika Fuzzy untuk Pendukung Keputusan. Yogyakarta: GrahaIlmu.
[4] Rahmadi, M. A. danMustafidah, H.2014. InferensiFuzzy untukMengetahuiPengaruhMotivasiBelajard anLingkunganBelajarterhadapPrestasiBelaj arMahasiswa.Jurnal JUITA ISSN: 2086- 9398, Vol. III Nomor 1.
[5] Saxena, N. and Saxena K. K. 2010Fuzzy Logic Based Students Performance Analysis Model Educational Institutions. Vivechan International Journalof Research: Vol.1.
[6] Sari, R. M. dan Abadi, A. M. 2015.Aplikasi Fuzzy Inference System dalam Penilaian Prestasi Mahasiswa. Seminar Nasional Matematika dan Pendidikan Matematika UNY. ISBN. 978-602-73403-0-5.
[7] Azmania, Z. F., Bu’ulolo, dan Siagian P. 2013.Penggunaan Sistem Inferensi Fuzzy untuk Penentuan Jurusan di SMA Negeri 1 Bireuen. Medan: Saintia Matematika. Vol. 1, No. 3, pp. 233–247.
[8] Assegaf, Y. N. dan Estri, M. N. 2012. Aplikasi Fuzzy Inference System Metode Mamdani untuk Rekomendasi Pemilihan Bidang Kajian pada Mahasiswa Program StudiMatematika UNSOED. Vol 4 No. 2, pp. 253-26