KAJIAN KLASIFIKASI KUALITAS PENELITIAN INTERNAL DOSEN STIKOM BALI DENGAN MENGGUNAKAN METODE CLUSTERING
Keywords:
Cluster analysis, K – Means, Classification, mining data
Abstract
Cluster analysis is a multivariate analysis that aims to classify objects based on similarity in characteristics between objects. Objects can be products, objects, and people. The object will be classified into one or more cluster (groups) so that the objects that are in a cluster will have similarities with one another. This research aims to apply cluster analysis grouped the internal research lecturer STIKOM BALI of component assessment and educational level resulting in the appropriate groups of components. This grouping is done to see how the quality of internal research of lectures from year to year and viewed historically or linearity and sustainability of results of the research. In General, the results of internal research of lectures went into the passing grade was less good with a sum of around 129 objects from 240 objects or about 54% to the level of accuracy of the classification achieved occupancy of 95.8%. While the results of internal research of lectures in 2 years or 3 last period experienced a fluctuation of the passing grade
References
[1] Panduan Pelaksanaan Penelitian Internal. STMIK STIKOM BALI. 2016. STIKOM BALI.
[2] Davies, Beynon, P. Database Systems Third Edition. Palgrave Macmillan. New York. 2004
[3] Santosa, B. Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis. GrahaIlmu. Yogyakarta. 2007.
[4] Barry K. Lavine. Klastering and Classification of Analytical Data. Encyclopedia of Analytical Chemistry. John Wiley & Sons Ltd, Chichester. 2009
[5] Everitt, B.S., Landau, S. and Leese, M. Klaster Analysis, Fourth edition, Arnold. 2001.
[6] Gudono. (2011). Analisis Data Multivariat. Edisi Pertama. Yogyakarta: BPFE. 2011.
[7] Handoyo, Rendy., R. Rumani M., dan Surya Michrandi Nasution.. Perbandingan Metode Klastering Menggunakan Metode Single Linkage dan K - Means pada Pengelompokan Dokumen. JSM STMIK Mikroskil. Vol 15 No 2. Oktober 2014, pp.73-82.
[8] Kuarniawa, E., Maria Fransiska, Tinaliah, Rachmansyah. Penerapan Algoritma K-Means untuk Klastering Dokumen. EJURNAL STMIK GI MDP. 2014 http://eprints.mdp.ac.id/1004/1/27ernieJurnal%20Skripsi.pdf [akses 15/1/2016].
[2] Davies, Beynon, P. Database Systems Third Edition. Palgrave Macmillan. New York. 2004
[3] Santosa, B. Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis. GrahaIlmu. Yogyakarta. 2007.
[4] Barry K. Lavine. Klastering and Classification of Analytical Data. Encyclopedia of Analytical Chemistry. John Wiley & Sons Ltd, Chichester. 2009
[5] Everitt, B.S., Landau, S. and Leese, M. Klaster Analysis, Fourth edition, Arnold. 2001.
[6] Gudono. (2011). Analisis Data Multivariat. Edisi Pertama. Yogyakarta: BPFE. 2011.
[7] Handoyo, Rendy., R. Rumani M., dan Surya Michrandi Nasution.. Perbandingan Metode Klastering Menggunakan Metode Single Linkage dan K - Means pada Pengelompokan Dokumen. JSM STMIK Mikroskil. Vol 15 No 2. Oktober 2014, pp.73-82.
[8] Kuarniawa, E., Maria Fransiska, Tinaliah, Rachmansyah. Penerapan Algoritma K-Means untuk Klastering Dokumen. EJURNAL STMIK GI MDP. 2014 http://eprints.mdp.ac.id/1004/1/27ernieJurnal%20Skripsi.pdf [akses 15/1/2016].