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ABSTRACT

Maintaining optimal dissolved oxygen levels is essential for aquatic ecosystems, yet industrial and
domestic waste has led to a global decline in dissolved oxygen. Traditional measurement methods,
such as oxygen meters and Winkler titration, are often costly or time-consuming. This study aims to
improve the Root Mean Square Error, Mean Absolute Error, and R2 values for estimating dissolved
oxygen levels. The research method uses Multiple Linear Regression with various training and testing
data splits, both before and after applying polynomial features. The model is further optimized using
a stacking technique, with Random Forest Regressor and Gradient Booster Regressor as base models.
The results show that the best model was achieved using the stacking ensemble technique with a 90:10
data split and polynomial features, yielding a Root Mean Square Error of 1.206, Mean Absolute Error
of 0.990, and R2 of 0.670. This model has also met the assumptions of linear regression, such as
residual normality, homoscedasticity, and no autocorrelation of residuals. This study concluded that
the ensemble stacking technique and the addition of polynomial features could improve the model in
estimating dissolved oxygen values and also contribute by providing an accessible user interface using
the Gradio Framework, allowing users to estimate dissolved oxygen levels effectively.
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1. INTRODUCTION
The universe comprises various elements, including wind, air, soil, and water. Water, as the most abundant substance on Earth,

is a source of life for living organisms [1]. Water contains dissolved oxygen used by aquatic animals to survive [2]. Therefore,
Dissolved Oxygen (DO) is considered a crucial variable since oxygen levels that are too low can endanger aquatic habitats. Over the
past 50 years, global dissolved oxygen levels have decreased by 2% [3]. The observed decline may be attributed to heightened human
activities, particularly the disposal of industrial and domestic waste into water bodies, which degrades water quality and disrupts the
balance of aquatic ecosystems. DO levels can also be significantly diminished due to reduced turbulence and atmospheric mixing,
along with elevated water temperatures that exacerbate the decline in dissolved oxygen conditions [4]. Optimal DO levels for most
fish are at least 5 milligrams per liter (mg/L). If DO levels fall below this threshold, or even below 2 mg/L, many fish will experience
stress, leading to hypoxic conditions that can be fatal to both fish and invertebrates [5, 6].

Currently, DO levels can be measured using various methods, including DO meters and the Winkler titration method. However,
DO meters are quite expensive, and the Winkler method requires reagents that are not readily available and involve a lengthy process.
Data mining can be employed to estimate DO levels to address this issue. Data mining involves processing raw data to extract
meaningful information, which aids in selecting the appropriate techniques prior to model development [7, 8]. This methodology has
been widely utilized across various industrial sectors [8–11]. One of the data mining algorithms is Multiple Linear Regression, which
predicts an independent variable based on dependent variables [12]. The study conducted by [13], which explor es the optimization of
Random Forest algorithms for classifying bank marketing data, suggests that implementing feature selection, feature engineering, and
addressing class imbalance, data mining components may enhance model performance. Another study [14], achieved an accuracy
of 93.49% using a hybrid data mining approach, specifically combining Näpve Bayes + K-Medoids clustering, and focused on
determination and financing prediction in Shariah financing and loan cooperatives. The study [15] applied multiple linear regression
to predict the number of students, producing coefficients and intercepts. Then, the researcher [16] compared Random Forest Regressor
(RFR) and Multiple Linear Regression (MLR) in cattle weight estimation using feature selection, where MLR with five features
produced a Mean Absolute Error (MAE) of 0.35, Mean Absolute Percentage Error (MAPE) of 0.07, Root Mean Square Error
(RMSE) of 0.5, and an R2 of 0.99. Although the metrics in this study were very good, it does not guarantee that all linear regression
assumptions were met. Referring to DO, the

researcher [17] used time-series data and spatial data measured at 53 different locations. The spatial data results showed
that the MLR model produced an R2 of 0.57. This was followed by the study [18], which built a model to estimate DO using
dimensionality reduction techniques and compared the RFR and Multi-Layer Perceptron (MLP) algorithms. The best model in this
study was RFR, with an RMSE of 1.2805 and an MAE of 0.8911. Finally, the researcher [19] estimated DO values using a Support
Vector Regressor, resulting in an R2 of 0.32. There is a gap in previous research, particularly in the R2 metrics produced and the
lack of implementation to optimize models using ensemble techniques. Ensemble is a machine learning technique that combines
several predictive models to improve overall performance compared to using a single model [20]. One such ensemble technique is
stacking or stacked generalization, which combines the predictions from several base models to generate a better final prediction
using a meta model [21]. The difference in this study lies in the quantity of data and the attributes used, as well as the implementation
of optimization techniques using the Stacking Ensemble.

This study aims to obtain an optimal model for estimating DO values by applying feature engineering techniques such as
adding polynomial features to the dataset and comparing models with and without polynomial features. Additionally, the stacking
ensemble technique was applied using Random Forest Regressor and Gradient Boosting Regressor as base models and Multiple
Linear Regression as the meta model. After obtaining the optimal model, linear assumption tests were also applied, including 1)
Normality of residuals, 2) Homoscedasticity, and 3) No autocorrelation of residuals. The tests are conducted to determine the validity
of the model. If these assumptions are not met, the prediction results can be biased, inaccurate, and unreliable for decision-making
[22]. The results of this study indicate that the best model, using the stacking ensemble technique with Multiple Linear Regression
as the meta model and a 90:10 data split, produced an RMSE of 1.206, MAE of 0.990, and an R2 of 0.670. This model met all the
assumptions of linear regression, including normality of residuals, absence of autocorrelation in the residuals, and homoscedasticity,
ensuring that the error variance remained constant across all levels of the independent variables. This study contributes by creating a
user interface using the Gradio Framework, which is accessible to all users and helps estimate DO values.

2. RESEARCH METHOD
This study employed a quantitative approach to develop an optimal estimation model. The process began with data acquisition,

utilizing secondary data sourced from Kaggle.com. This data was thoroughly analyzed to extract key information, which informed
the decision-making process before model development. After the data was carefully analyzed and processed, the next step involved
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building a model designed to estimate DO levels accurately based on the identified variables. The comprehensive procedure is
illustrated in Figure 1.

Figure 1. Research flow

2.1. Dataset

The Dissolved Oxygen dataset used in this study, sourced from Kaggle, comprises eight attributes and a total of 2371 rows.
This dataset includes detailed records of water quality parameters collected biweekly from various aquatic locations, such as bays,
fishing ponds, and other water bodies. Each record in the dataset represents a snapshot of water quality conditions at a specific time
and location, providing a comprehensive overview of the factors influencing dissolved oxygen levels. For a complete description of
the dataset attributes, please refer to Table 1.

Table 1. Attributes Information

Attribute Type Data Description
Date Datetime Date of water quality recording

Salinity (ppt) Float Salinity level (%)
Dissolved Oxygen (mg/L) Float Dissolved oxygen amount in water (mg/l)

pH Float Water pH level
SecchiDepth(m) Float Secchi depth in meters (water clarity)
WaterDepth(m) Float Water depth at sample location
WaterTemp(C) Float Water temperature in Celsius

AirTemp(C) Float Air temperature in Celsius

2.2. Data Pre-Processing

The data pre-processing stage is vital in research as it converts raw data into a more organized format, making it ready for anal-
ysis and machine learning model development [23]. This stage ensures that the data is cleaned and refined to meet the requirements of
the subsequent analytical processes. In this study, pre-processing steps include data cleaning and feature engineering, which involve
several key components. These procedures are outlined in detail below, highlighting the specific methods and techniques used.

2.3. Data Cleaning

In this study, the implementation of data cleaning involves several key steps: removing unused attributes such as Date, elim-
inating attributes air temp because there is multicollinearity with water temp, addressing missing values by opting to remove them
for the sake of improving model performance, and eliminating duplicate data entries. This detailed approach underscores the critical
importance of data cleaning, as it significantly impacts the quality and effectiveness of the resulting model. Each of these steps is
designed to enhance the integrity of the dataset, thereby influencing the overall model accuracy and reliability [24].

Enhancing Multiple Linear . . . (Rahmaddeni)
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2.4. Features Engineering
The feature engineering stage involves leveraging domain knowledge to extract meaningful features from raw data for use in

machine-learning models [25]. Outliers are detected by calculating the interquartile range (IQR) using the formula: interquartile
range IQR = Q3 − Q1. Where Q1 represents the 25th percentile, and Q3 represents the 75th percentile of the data distribution.
The IQR is the difference between these two percentiles. Outliers are identified by calculating the Lower Fence = Q1− 1, 5× IQR
and the Upper Fence = Q1 + 1, 5 × IQ. Data points falling outside these fences are considered outliers [26]. However, in this
study, instead of removing the outliers, they are replaced with the respective values of the lower and upper fences. Additionally, this
study adds a new attribute called polynomial features. Polynomial features are used to capture non-linear relationships in the dataset.
Implementing polynomial features can enhance the performance of machine-learning models [27]. For example, if x0 and x1 are
features, the polynomial features could include x2

0, x0x1, dan x2
1.

2.5. Modeling
Before building the model, the dataset in this study was split into training and testing sets with the following ratios: 60:40,

70:30, 80:20, and 90:10. The dataset was used in two scenarios: (1) with polynomial features and (2) without polynomial features. A
comparison of model performance was then conducted using Multiple Linear Regression, which is a statistical technique employed
to model the relationship between a dependent variable and one or more independent variables [28]. The formula for Multiple Linear
Regression is presented in Equation 1, which X1, X2, . . . ,Xk are the independent variables. α is the intercept. β1, β2, βk are the
regression coefficients for each independent variable.

Y = α+ β1X1 + β2X2 + . . .+ βkXk (1)

2.6. Optimizing
The optimization performed in this study utilized the Stacking Ensemble technique, with Random Forest Regressor (RFR) and

Gradient Boosting Regressor (GBR) as the base models. RFR is a tree-based algorithm capable of handling large-scale data and is
more robust to outliers [16]. GBR is an ensemble model that uses boosting techniques to build a stronger model from a collection
of weak models, such as decision trees. In this algorithm, each new model learns from the mistakes of the previous model, and the
result is a combination of all the initial predictions that are gradually updated [29]. The output of both models is then combined and
used as input for the meta model. In this case, the meta model used is Multiple Linear Regression, which is responsible for learning
the patterns from the predictions generated by the base models. In this way, the meta model produces a more optimal final prediction,
as it leverages the predictive strengths of both base models. An illustration of how the stacking ensemble works in this study can be
seen in Figure 2.

Figure 2. Stacking ensemble architecture with random forest and gradient boosting regressor as base models and multiple linear
regression as meta model

2.7. Model Evaluation
Several metrics are used to evaluate the models. In this study, the performance metrics include RMSE, MAE, and R2. RMSE

measures the average prediction error by quantifying the difference between predicted and actual values in the same units as the target
variable [29]. MAE assesses the average absolute error between predictions and actual values, reflecting the model’s accuracy in
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replicating observed outcomes [30]. R2 indicates the proportion of variability in the dependent variable explained by the independent
variables, with values ranging from 0 to 1. An R2 value close to 1 suggests a strong model fit to the observed data [17]. These metrics
are detailed in Equations 2, 3, and 4.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2)

MAE =
1

n

n∑
i=1

|yi − ŷi| (3)

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(4)

Because this research uses a multiple linear regression algorithm, model evaluation is also carried out by testing the assumptions
of linear regression to determine whether the linear regression model created is good enough. Testing the normality of residuals
ensures that prediction errors are evenly distributed and the model is unbiased. This guarantees good predictions and valid statistical
inferences from the model [31]. In this study, the normality test is conducted using the Shapiro-Wilk statistical method, which tests
the null hypothesis that the samples x1, . . . , n come from a population that follows a normal distribution as explained in equation 5.
(i) where the parentheses enclosing the subscript i represent the i-th order statistic, meaning the i-th smallest number in the sample
(not to be confused with xi), X = (x1 + . . .+ xn)/n is the sample mean, and the coefficient αi is given by equation 6.

W =

(∑n
i=1 aiX(i)

)2∑n
i=1(xi − x̄)2

(5)

(ai, . . . , an) =
mTV −1

c
(6)

Where C is the normalization vector defined as C =
∥∥V −1m

∥∥ =
(
mTV −1m

) 1
2 and the vector m is m = (mi, . . . ,mn)

T ,
assisting with the expected values of the statistics from a sample of independent and identically distributed random variables from a
standard normal distribution. Finally, V is the covariance matrix of these normal-order statistics. The Shapiro method is used in this
research to test the normality of residuals. The hypotheses are as follows: H0 = The residuals from the regression model follow a
normal distribution; Ha = The residuals from the regression model do not follow a normal distribution. Ensuring the normality of
residuals is a crucial part of validating linear regression models for accurate statistical inference, unbiased predictions, and effective
model diagnostics. The concept of homoscedasticity in regression, which requires constant error variance across all levels of the
independent variables, is crucial for valid analysis. The Goldfeld-Quandt test is used to check for homoscedasticity by evaluating
the consistency of variance between observed and predicted values of the dependent variable [32]. This test employs F-statistics, as
detailed in Equation 7, to confirm constant error variance.

F =
RSS1

n1−k
RSS2

n2−k

(7)

RSS1 and RSS2 are the squared residuals from two subsets, n1 and n2 are their respective observation counts, and F includes
estimated parameters. The hypothesis checks if H0 = The residual variance is constant (homoscedasticity) and Ha = The residual
variance is not constant (heteroscedasticity) [33]. The final step is testing for autocorrelation, which ensures that residuals in linear
regression are independent. Autocorrelation testing checks if residuals are correlated, which may indicate unmodeled patterns af-
fecting the residuals [34]. As outlined in Equation 8, the Ljung-Box test is used for this purpose. It evaluates whether significant
correlations exist between residuals at different lags, thus assessing the independence of errors. n is the sample size p̂k is the sample
autocorrelation at lag k, and h s the number of lags tested. The hypothesis is rejected if Q > X(1 − α, h)2, where X(1 − α, h)2 is
from the chi-squared distribution table for significance level α and h degrees of freedom. Hypothesis: H0 = No autocorrelation, and
Ha = Autocorrelation exists.

Q = n(n+ 2)

h∑
k=1

p̂2k
n− k

(8)
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3. RESULT AND ANALYSIS
In the initial stage of building the model, this study first conducted modeling using multiple linear regression by comparing

the model’s performance across various training and testing data ratios, specifically 60:40, 70:30, 80:20, and 90:10. This was done
to determine the most optimal model for different proportions of training and testing data [35]. The results of these experiments can
be seen in Table 2.

Table 2. Model Comparison by Splitting Data

Model Splitting Data RMSE MAE R2

MLR 60:40 1.6502 1.3267 0.4672
70:30 1.6692 1.3488 0.4642
80:20 1.6039 1.3003 0.4714
90:10 1.4335 1.1466 0.5488

Table 2 shows that the MLR model with data splitting ratios of 60:40, 70:30, and 80:20 results in an average RMSE of 1.6 and
an R2 value below 0.5. This indicates suboptimal performance. From these results, it can be observed that the best model occurs
with a data splitting ratio of 90:10, yielding an RMSE of 1.4335, MAE of 1.1466, and an R2 of 0.5488. These results are considered
reasonably good. Next, the authors compared the model with polynomial features and without polynomial features using the 90:10
data split, as the best model was previously observed with this data split. The results of this comparison between the two models can
be seen in Figure 3.

Figure 3. Model Comparison with and without Polynomial Features

Based on Figure 3, the MLR + PF model shows a slight improvement, although it is not significant. This model yields an RMSE
approximately 0.02 lower than the MLR model; however, the MAE score increases by approximately 0.01 compared to the previous
model. Additionally, R2 experiences an increase of approximately 0.01 from the previous model. This indicates that the model shows
an improvement, though not significant, in RMSE and R2 scores, yet the model still cannot be considered optimal. Therefore, the
authors attempted to optimize the MLR + PF algorithm using the stacking ensemble method. In this stacking ensemble, RFR and
GBR were used as base models, with the only parameter adjusted being random state = 404, while all other parameters were kept
at their default settings. The MLR model was used as the meta model in this stacking technique. The results of this study showed
improvement, as can be seen in Table 3.

Table 3. Model Result with Stacking Ensemble

Model Splitting Data RMSE MAE R2
RF + GBR + MLR + PF 90:10 1.206 0.990 0.670

After optimizing the model using the stacking ensemble method, the next step was to test the assumptions underlying linear
regression to ensure the reliability of the resulting model. The tests conducted included the normality of residuals, homoscedasticity,
and no autocorrelation of errors. The results of these tests indicated that the model also met the assumptions of linear regression, as
shown in Table 4.
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Table 4. Regression Model Assumption Test Results

Test Statistic p-value H0 Ha

Normality of residuals Shapiro-Wilk 0.4658
√

−
Homoscedasticity Goldfeld-Quandt 0.0540

√
−

No autocorrelation of residuals Ljung-Box 0.5269
√

−

The Shapiro-Wilk test was conducted to examine whether the residuals are normally distributed. With a p-value of 0.4658,
this result indicates that there is not enough evidence to reject the null hypothesis (H0), which states that the residuals are normally
distributed at a general significance level of α = 0.05. Therefore, the assumption of normality of residuals is satisfied. The Goldfeld-
Quandt test was used to assess homoscedasticity, i.e., whether the residual variance remains constant. With a p-value of 0.0540,
this result suggests that the assumption of homoscedasticity is nearly fulfilled. The Ljung-Box test was conducted to check whether
the residuals are autocorrelated. A p-value of 0.5269 indicates that there is no evidence to reject H0, meaning that there is no
autocorrelation in the residuals. To facilitate users in estimating dissolved oxygen levels, this research includes a GUI accessible to
all users. The GUI provides output indicating the impact of various conditions on DO levels. The GUI, hosted on HuggingFace, offers
an intuitive and user-friendly platform for these estimations. The interface, as shown in Figure 4, can be accessed at the following
link: https://huggingface.co/spaces/papayalovers/dissolved oxygen prediction.

Figure 4. User Interface for Estimating Dissolved Oxygen Levels

The findings of this study include the development of an optimized model for estimating DO levels, complete with a user-
friendly interface. The proposed model achieved performance metrics with an RMSE of 1.206, MAE of 0.990, and R2 of 0.670. The
results of this study are in line with previous research, such as [18], which compared the RFR and MLP in estimating DO values
using the wrapper feature selection method to reduce data dimensionality. Their findings showed that the RFR model achieved an
RMSE of 1.2805 and an MAE of 0.8911. Additionally, research by [17] using MLR reported an R2 of 0.57, while [19] found an R2

of 0.32 SVR. Similarly, this study found that, with a 90:10 data split and the addition of polynomial features, applying a stacking
ensemble model with RFR and GBR as the base models improved performance, achieving an RMSE of 1.206 and an R2 of 0.670.
However, there was a slight decline in the MAE, which reached a value of 0.990, as shown in Table 5.

Table 5. Comparison with Previous Research

Research Model Method for Improvement RMSE MAE R2

[17] MLR - - - 0.57
[18] RFR Wrapper Feature Selection 1.2805 0.8911 -
[19] SVR - - - 0.32

This Study Proposed Model Polynomial Features + Stacking 1.206 0.990 0. 670

Enhancing Multiple Linear . . . (Rahmaddeni)

https://huggingface.co/spaces/papayalovers/dissolved_oxygen_prediction


92 ❒ ISSN: 2476-9843

4. CONCLUSION
This study employed the MLR method to estimate DO levels. The data was split into 90% training data and 10% testing

data, yielding an optimal model. A stacking ensemble technique was applied to improve the performance of MLR, which was
suboptimal on its own. RFR and GBR were used as base models, with MLR serving as the meta model. The results from this
stacking approach showed an improvement in performance metrics, with an RMSE of 1.206, an MAE of 0.990, and an R2 of 0.670.
Furthermore, the model meets the key assumptions of linear regression: the residuals are normally distributed, the residual variance
remains constant (indicating homoscedasticity), and there is no autocorrelation among the residuals. In addition, the study provides
a user-friendly interface that enables users to estimate DO values easily. However, future research should explore using different
datasets or alternative algorithms to achieve even better metrics, particularly RMSE, MAE, and R2. These efforts could help further
enhance model performance and robustness in estimating DO values.
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