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ABSTRACT

Over the past few decades, the Internet of Things (IoT) has become increasingly significant due to
its capacity to enable low-cost devices and sensor communication. Implementation has opened many
new opportunities for efficiency, productivity, convenience, and security. However, it has also brought
about new privacy and data security challenges, interoperability, and network reliability. The re-
search issue was that IoT devices are frequently open to attacks. Certain machine learning (ML)
algorithms still struggle to handle imbalanced data and have weak generalization skills compared to
ensemble learning. The research aimed to develop security for IoT networks based on enhanced
ensemble learning using Grid Search and Random Search techniques. The method used was the
ensemble learning approach, which consists of Random Forest (RF), Adaptive Boosting (AdaBoost),
Gradient Boosting Machine (GBM), and Extreme Gradient Boosting (XGBoost). This study used the
UNSW-NB15 IoT dataset. The study’s findings demonstrated that XGBoost performs better than
other methods at identifying IoT network attacks. By employing Grid Search and Random Search op-
timization, XGBoost achieves an accuracy rate of 98.56% in binary model measurements and 97.47%
on multi-class data. The findings underscored the efficacy of XGBoost in bolstering security within
IoT networks.
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1. INTRODUCTION
The Internet of Things (IoT) enables items to communicate, sense their environment, and share data online. IoT has grown

significantly in importance over the past few decades as a result of its ability to facilitate low-cost device and sensor communication
[1, 2]. Aside from data connectivity infrastructures, analytics, and people, the IoT is propelled by intelligent assets that exchange
and store data [3–5]. These IoT smart systems are susceptible to a variety of cyberattacks, including denial-of-service (DDoS), man-
in-the-middle (MiM), backdoor, and infiltration attacks [6, 7]. Attacks like this have the potential to compromise the integrity and
confidentiality of data on that network [8]. Therefore, a detection system is a must in any effective security solution to keep them safe
from these kinds of attacks. One security tool for monitoring data traffic is an intrusion detection system (IDS) [9, 10]. It protects the
network by acting as a second line of defense. IDS monitors the networks at every point of entry, looks for any unauthorized activity
in the packets moving through the channel, and notifies the appropriate authority if it finds any [11–13]. IDS is typically installed
after a firewall, which seems to be its optimal placement. To detect known attacks, they compare the data packet with a predefined
list or database containing the pattern or signatures of known attacks [14, 15, 15]. IDS offers useful safeguards to protect IoT from
multiple outbreaks [16, 17].

A literature review was undertaken to provide an in-depth understanding of using Machine Learning (ML) techniques in
IoT network attack detection. This paper proposes a One-Class Bidirectional GRU Autoencoder and Ensemble Learning-Based
Lightweight Intelligent NIDS. In addition to correctly classifying data as normal or abnormal, it can also classify unknown attacks as
the kind that most closely resemble known attacks [18]. For an intrusion detection system using the Information-Centric Networking
(ICN) dataset, this paper presents a Gradient Boosting Decision Tree (GBDT)-paralleled quadratic ensemble learning method. The
results demonstrate that the method achieves significantly better performance when compared with existing methods [19]. Using the
LightGBM classifier, propose a dynamic ensemble algorithm for anomaly detection in IoT environments [20, 21]. The ensemble
has been constructed using three extensively used models: Artificial Neural Networks (ANN), Random Forests (RF), and Decision
Trees (DT), based on all the taken into consideration metrics, the system can detect nine different categories of attacks with high
performance, the experimental evaluation carried out on the CIC-IDS2017 public dataset [13, 22, 23]. Lightweight ML models, such
as decision trees (DT), logistic regression (LR), and Gaussian naive Bayes(GNB) as the base classifier and stochastic gradient descent
(SGD) as the meta-classifier, are used to build this ensemble model [21]. Three datasetsKDD Cup 1999, UNSW-NB15, and CIC-IDS
2017are used to train and assess the performance of this proposed model and the individual classifiers that went into building the
ensemble model. The empirical results unequivocally demonstrate the great benefits of using an ensemble classifier in intrusion
detection systems with unbalanced datasets [23]. Stacked ensemble technology is being used to create improved IDS that safeguard
information networks [4, 24–26]. Four base ML algorithms, namely K-Nearest Neighbour (KNN), Nave Bayes (NB), Support Vector
Machine (SVM), and Decision Tree (DT), were trained on pertinent features from the UNSW-15NB intrusion detection dataset
to construct base-predictive models [6, 9, 27, 28]. 3.0% more accurate classifications were made thanks to the stacked ensemble
recording [27]. To classify the network flow as normal or anomalous, the suggested ML pipeline combines the bagging and boosting
algorithms through voting between an RF classifier and an XGBoost classifier [7, 10, 29–32]. The UNSW-NB15, NSL-KDD, and
BoTIoT benchmark datasets are used to train the proposed model; the accuracy of the results is extremely high [2, 11, 33–35]. Shallow
learning techniques like extreme gradient boosting (XGBoost), K-nearest Neighbours (KNN), and Random forest (RF) are used to
further train and validate the Message queuing telemetry transport (MQTT) dataset [5, 12]. Better attack detection rates are achieved
in experimental results compared to the control group. The dual ensemble model presented in this work combines gradient-boosting
decision trees (GBDT) and bagging, two popular ensemble techniques. The evaluation of GBDT algorithms, including LightGBM,
CatBoost, XGBoost, J48 Decision Tree, and Gradient Boosting Machine (GBM), is conducted on several publicly accessible data
sets, including NSL-KDD, UNSW-NB15, and HIKARI-2021 [35–37]. According to the results, the suggested method appears to be
a workable answer for the anomaly-based IDS task.

A gap in the literature that has not yet been addressed is the overfitting problem that arises when complex models are
applied to small or unbalanced data sets. Ensemble learning can help reduce overfitting problems when complex models are used on
small or unbalanced data sets. Nevertheless, selecting the best model to add to an ensemble and modifying the parameters to achieve
optimal performance can be challenging. In this work, we suggest enhancing an ensemble model’s performance to detect attacks on
IoT networks. This study differs from others in that it optimizes the ensemble learning model’s parameters to increase the accuracy
of attack detection by using Grid Search and Random Search optimization techniques.

One issue with this research is that because of the architecture’s widespread use and the insufficient application of technological
security, IoT devices are susceptible to different kinds of cyberattacks. Conventional Machine learning (ML) models still tend to
perform less well in generalization. In general, conventional models are less adaptable when it comes to managing abrupt shifts or
data drifts. This has an impact on low detection results. Determining an appropriate method to safeguard these networks against
cyberattacks is desirable to improve the dependability of these systems [18]. The goal of this work is to create and enhance machine
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learning ensemble models to identify IoT network device attacks. This study used four ensemble models: eXtreme Gradient Boosting
(XGBoost), Gradient Boosting Machine (GBM), Adaptive Boosting (AdaBoost), and Random Forest (RF). The Grid Search and
Random Search hyperparameter optimization techniques are used to raise the ensemble model’s performance.

To address the aforementioned issues, we have presented a cyberattack detection framework combining an enhanced ensemble
learning model with a Grid Search and Random Search optimization algorithm. The ensemble design makes use of four popular and
effective ML techniques: RF, GBM, XGBoost, and AdaBoost [38, 31, 35]. The primary contribution of the work lies in developing
an ensemble learning model-based framework tailored for IoT cyberattack detection. This framework incorporates the latest classifier
models like XGBoost, AdaBoost, GBM, and RF, which are utilized to construct the ensemble learning model. The approach also
focuses on improving attack detection accuracy by leveraging Grid Search and Random Search algorithms to optimize the model
parameters, thereby enhancing the overall efficacy of the detection system.

2. RESEARCH METHOD

In this study, experimental methods are employed. The suggested method for attack detection in IoT environments is presented
here in block diagram form, utilizing an improved ensemble learning technique. Several functional units make up the suggested
architecture. Figure 1 displays the employed research methodology.

Figure 1. Methods of research

The UNSW-NB15 intrusion detection dataset underwent preprocessing to prepare it for the creation of ensemble learning
intrusion detection models. Feature scaling, label coding, and handling of missing values were applied to the data set. After that,
the data is separated into training and testing sets. After that, the data is trained and tested using the ensemble learning model. Grid
Search and Random Search techniques were used to improve the performance of the ensemble learning process and optimize the
model hyperparameters.

A Comparison of Enhanced . . . (Edi Ismanto)
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2.1. Datasets
The UNSW-NB 15 IoT dataset was the source used in this study. UNSW-NB 15 is the most current intrusion detection research

dataset made available by the Australian Centre for Cyber Security (ACCS) Cyber Range Laboratory. The UNSW-NB15 dataset has
the following advantages over NSLKDD [32]: First, it includes contemporary synthesized attack activities and actual modern normal
behaviors. Secondly, there is a similarity in the training and testing sets’ probability distributions. Thirdly, it employs a collection
of characteristics from the packet header and payload to represent the network packets effectively. The analysis of the UNSW-NB15
on existing classification systems showed complex patterns in the dataset, suggesting that it can be used to evaluate both novel and
well-established classification methods with precision and effectiveness [33, 21, 39, 27, 28]. Table 1 displays the distribution and
description of its nine attack categories and normal connections. The training and testing sets consist of 82,332 and 175,341 records,
respectively.

Table 1. An Explanation of the Various Attack Methods Found in the UNSW-NB15 Dataset

Type No of Records Description
Normal 93 Innate transaction information
Analysis 2.674 This is an intrusion attack against a web application using port-based penetration.

Backdoors 2.329 This is an attempt to access a system without authorization through a penetration test.
DoS 16.353 This attack strips authorized network users of their entitlement to the memory and storage space that the system

requires to carry out computation tasks.
Exploits 44.525 This is a type of penetration attack where an operating system glitch, bug, or vulnerability is exploited using a series

of instructions or code.
Fuzzers 24.244 This is a scan attack that uses software testing techniques to systematically bombard the victim’s system with multi-

ple requests until it crashes to find security holes and program flaws in the operating system, network, or program.
Generic 58.871 This is a penetration attack technique that doesn’t take the block cipher’s structure into account and can be used

against any block cipher.
Reconnaissance 13.987 This is a type of probe attack that collects data about a network’s configuration to circumvent security measures.

Shellcode 1.511 This is a penetration attack that compromises the victim’s computer by using a small program that gets its instructions
from a shell.

Worms 174 This is a self-replicating malicious code scan attack that propagated to other computers, primarily via a computer
network, without joining itself to a program like a virus.

This data set has nine distinct attack categories, with normal denoting non-attack. The attack data categories that appear most
frequently in data are ”Generic,” ”Exploits,” ”Fuzzers,” ”DoS,” and ”Reconnaissance”. The distribution of attacks that took place is
depicted in Figure 2.

Figure 2. The distribution of attacks

2.2. Pre-Processing
Following the dataset’s selection, data-cleaning procedures are carried out to normalize the features and remove noise [15].

Several approaches are used for normalization; however, the min-max normalization approach is employed in this study because it
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is more effective in terms of scaling and resolving problems with z-score normalization related to outliers [40]. Values normalized
within the interval [0, 1] by min-max scaling. Equation (1) can be used to calculate min-max normalization [41].

Zi =
Yi −min(Y )

max(Y )−min(Y )
(1)

The number of features is denoted by Y = (Y1, Y2, Y3, . . . , Yn), the feature we wish to normalize is Yi, and the normalized
feature is Zi. As a result, all features are now within the same scope and have equal weights.

Before the label encoding process was initiated, duplicate and inconsistent values were eliminated from the datasets [26].
The nominal attributes had to be changed to numerical values in the following step. This is because the back-end computations of
ensemble learning algorithms use numerical values rather than nominal values. We must first complete this data encoding step to
pass data to the suggested model. The two groups of the dataset consist of the binary class labels and multi-class labels sections. For
Binary Classification, a duplicate of DataFrame is made. There are two categories for the ”label” attribute: ”normal” and ”abnormal.”
Labels are encoded using LabelEncoder() and stored in the binary dataset ’label’, which consists of 81173 rows and 61 columns. For
multi-class classification, a copy of the DataFrame is made. The nine categories that make up the ’attack cat’ attribute are ’Analysis,
Backdoor, DoS, Exploits, Fuzzers, Generic, Normal, Reconnaissance, and Worms.’ Attack cat is encoded using LabelEncoder(), and
the encoded labels are saved in a label. Multi-class dataset with 69 columns and 81173 rows.

2.3. Ensemble Model
This paper aims to improve the attack classification recognition rate using an Ensemble Learning model that uses Random

Forest (RF) as the bagging model and boosting models like the AdaBoost algorithm, Gradient Boosting Machines (GBM), and
XGBoost.

2.4. The Random Forest (RF) Algorithm
The Random Forest (RF) algorithm is an ensemble learning method used in ML for classification and regression. To generate

more precise and reliable predictions, RF constructs several decision trees during training and merges the predictions from these trees
[25, 42]. RF uses bootstrap sampling on the training set of data before constructing each tree [10]. Bootstrap sampling is the process
of selecting random samples from training data and replacing them [11]. This can lead to some samples appearing more than once
and others not appearing at all.

2.5. The Adaptive Boosting (AdaBoost) Algorithm
The AdaBoost algorithm is an ensemble learning technique that combines multiple weak models (weak learners) into a single

strong model (strong learners) [42, 30]. It is particularly useful for classification [11]. AdaBoost has the advantage of being able to
work well with complex data and handle binary and multi-class classification problems [25].

2.6. The Gradient Boosting Machines (GBM) Algorithm
Gradient boosting machines (GBM) are popular ML algorithms that work well for regression and classification problems.

GBM is an ensemble method that focuses on data points that were not thoroughly examined in the past to correct earlier model errors
iteratively [37]. Among GBM’s benefits are its capacity to work with high-dimensional data, handle a broad range of feature kinds,
and typically generate very predictive models [31].

2.7. The eXtreme Gradient Boosting (XGBoost) Algorithm
XGBoost has emerged as one of the most well-liked and successful algorithms in ML competitions. It is also extensively

utilized in the industry for a range of prediction tasks, such as ranking, regression, and classification [10, 11]. XGBoost offers a
strong regularisation method to lessen overfitting. With XGBoost, missing data is automatically handled at any split point in the tree,
allowing for accurate prediction even when missing data is present. XGBoost makes use of memory distribution and parallelism to
optimize performance.

A Comparison of Enhanced . . . (Edi Ismanto)
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2.8. Optimizing Hyperparameters in Models
Hyperparameter model optimization is the process of enhancing the hyperparameter values of an Ensemble Learning model

[43]. Hyperparameters are variables that impact the model’s performance and complexity and are not altered during the training
process [37]. In this study, Grid Search and Random Search were the two hyperparameter optimization techniques employed. This
method involves methodically searching through various combinations of predefined hyperparameters. Grid search will assess every
possible combination of hyperparameters and choose the combination that yields the best results [44, 45]. The grid search mathemat-
ical notation IN Equation (2) [46].

Grid = R1 ∗R2 ∗ . . . ∗Rn (2)

R is the range of values that are possible for every hyperparameter. As a result, the set of all potential pairings of hyperparameter
values for evaluation will be generated. The function of evaluation f is used to evaluate each hyperparameter combination and choose
the set of hyperparameters that yields the best outcomes according to the given evaluation standards. This approach chooses a set
of hyperparameters at random for evaluation. Random search is defined as a stochastic search algorithm that selects randomly from
a set of hyperparameter values and evaluates the objective function for each randomly selected combination [47, 48]. The random
search is expressed mathematically in Equation (3) [49].

i = 1, 2, . . . , N (3)

To begin the random search, choose how many N iterations to run. From the set H, choose one hyperparameter combination at
random. Evaluation of the function of f in the selected hyperparameter combination. Based on the given evaluation criteria, choose
the hyperparameter combination that yields the best results.

2.9. Evaluation of Performance
Evaluating use model performance is the central component of any experimental study. For this reason, the standard evaluation

metrics that are the focus of this study are accuracy, recall, precision, and f1-score [10, 35, 36]. Equations (4), (5), (6), and (7) can be
used to calculate accuracy, recall, precision, and F1-Score, respectively [50].

Accuracy(Acc) =
TP + TN

TP + TN + FP + FN
(4)

Accuracy (Acc) is a variable used to calculate accuracy. TP (True Positive) is the number of positive cases that are correctly
identified by the model as positive. TN (True Negative) is the number of negative cases that are correctly identified by the model as
negative. FP (False Positive) is the number of negative cases falsely detected by the model as positive. FN (False Negative) is the
number of positive cases incorrectly detected by the model as negative.

Recall =
TP

(TP + FN)
(5)

Recall is used to measure how well a model detects positive cases. TP (True Positive) is the number of positive cases that are
correctly detected by the model as positive. FN (False Negative) is the number of positive cases incorrectly detected by the model as
negative.

Precision(Prec) =
TP

(TP + FP )
(6)

The Precision (Prec) variable is used to measure how well a model detects true positive cases. TP (True Positive) is the number
of positive cases that are correctly detected by the model as positive. FP (False Positive) is the number of negative cases falsely
detected by the model as positive.

F1− Score =
2 ∗ Precision ∗Recall

Precision+Recall
(7)

F1-Score measures the detection model’s performance by considering both precision (accuracy) and recall (sensitivity). Pre-
cision is the ratio of the number of positive cases correctly detected by the model (TP) to the total cases detected as positive by the
model (TP + FP). Recall (Sensitivity) is the ratio of the number of positive cases correctly detected by the model (TP) to the total
positive cases that should have been detected by the model (TP + FN).
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3. RESULT AND ANALYSIS
3.1. Environment of Experimentation

Research experiments were carried out using Python programming. With an 11th-generation Intel core i7 processor operating
at 3.00GHz and 64 GB of RAM. The actual UNSW-NB15 dataset, which includes recent attacks and non-malicious data, is used to
evaluate the efficacy of this IoT attack detection system. In random order, the binary data will be divided into two categories: training
(80%) and testing (20%). Similarly, 80% of the multi-class data is set aside for training and 20% for testing. The parameters of the
ensemble learning model are optimized with an estimator of (50, 100, and 150) and a learning rate of (0.1, 0.5, and 1.0).

3.2. Analysis of Experimental Results
This subsection evaluates a proposed attack detection system that guards against cyberattacks in IoT environments by employ-

ing an ensemble learning technique. The ensemble learning models, RF, AdaBoost, GBM, and XGBoost, were trained and tested in
the first phase without parameter optimization. The model measurement results in the binary class without optimization are shown in
Table 2.

Table 2. The Binary Class Model Measurement Results Without Optimization

Models Acc (%) Precision Recall F1-Score
RF 98.34 0.98 0.97 0.98

AdaBoost 98.35 0.98 0.98 0.98
GBM 98.32 0.98 0.98 0.98

XGBoost 98.54 0.99 0.99 0.99

Experiments on four ensemble models in the binary class without optimization show that the XGBoost model outperforms the
other models in terms of accuracy. The accuracy percentage attained by the XGBoost model was 98.54%. The binary class’s attack
detection classification outcomes for the XGBoost model are shown in Figure 3.

Figure 3. The XGBoost model classified attacks in the binary class.

A Comparison of Enhanced . . . (Edi Ismanto)



550 r ISSN: 2476-9843

In Figure 3, the number of cases that truly belong to the ”abnormal” class and were correctly detected by the XGBoost model
is 3770. The cases that should have been ”abnormal” but were detected as ”normal” by the XGBoost model amount to 139. The cases
of ”normal” that were correctly detected by the XGBoost model total 12229. Meanwhile, the cases that should have been ”normal”
but were detected as ”abnormal” by the XGBoost model are 97. Testing of ensemble models on multiclass data was also done without
optimization. Table 3 displays the model measurement results for the multi-class without optimization. Four ensemble models were
used for evaluation.

Table 3. The Multi-Class Model Measurement Results Without Optimization

Models Acc (%) Precision Recall F1-Score
RF 97.31 0.97 0.97 0.97

AdaBoost 97.17 0.96 0.97 0.96
GBM 97.49 0.97 0.97 0.97

XGBoost 97.51 0.97 0.98 0.97

When dealing with multi-class data, the XGBoost model continues to outperform other models. When compared to other mod-
els, the multi-class XGBoost accuracy of 97.51% was the highest. The results of the XGBoost model’s attack detection classification
on multi-class data are shown in Figure 4.

Figure 4. The Classification Outcomes of the XGBoost Model’s Attack Detection on Multi-Class Data

Based on Figure 4 for multi-class data, the XGBoost model correctly detects 109 instances as ’Analysis.’ It detects 1 instance
as ’Backdoor’. This model accurately identifies 346 instances as ’DoS’. It correctly detects 3211 instances as ’Exploits’. The model
detects 71 as ’Fuzzers’ and 104 as ’Normal,’ whereas they are actually ’Fuzzers.’ This model identifies 7879 as ’Generic,’ 44 as
’Reconnaissance,’ and 1 as ’Worms,’ whereas they are actually ’Generic.’ The model accurately detects 3915 instances as ’Normal’.
It predicts 111 as ’Reconnaissance,’ 4 as ’Generic,’ and 216 as ’Worms,’ whereas they are actually ’Reconnaissance.’ Additionally,
the model detects 8 as ’Generic’ and 10 as ’Reconnaissance,’ whereas they are actually ’Worms.’ Test results on binary and multi-
class classes form the basis for improving the model’s performance. Subsequently, four ensemble models were optimized on binary
and multi-class data using Grid Search and Random Search methods. The model measurement results for the binary with optimization
Grid Search are shown in Table 4.

Table 4. The Binary Model Measurement Results with Optimization Grid Search

Models Acc (%) Precision Recall F1-Score
RF + Grid Search 98.33 0.98 0.98 0.98
AdaBoost + Grid Search 98.36 0.98 0.98 0.98
GBM + Grid Search 98.47 0.98 0.98 0.98
XGBoost + Grid Search 98.56 0.98 0.98 0.98

XGBoost accuracy still yields the best results based on the binary model measurement results with Grid Search optimization
for the four ensemble models. After optimization with Grid Search and Random Search, XGBoost yielded an accuracy value of
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98.56%. The model measurement results for the binary with optimization Random Search are shown in Table 5. The results of the
XGBoost model’s attack detection classification in the binary class using Grid Search and Random Search optimization are shown in
Figure 5.

Table 5. The Binary Model Measurement Results with Optimization Random Search

Models Acc (%) Precision Recall F1-Score
RF + Random Search 98.3 0.98 0.98 0.98

AdaBoost + Random Search 98.29 0.98 0.98 0.98
GBM + Random Search 98.46 0.98 0.98 0.98

XGBoost + Random Search 98.56 0.98 0.98 0.98

(a) (b)

Figure 5. The XGBoost Model uses Grid Search and Random Search Optimization to Classify Attacks in the binary class

In Figure 5, the XGBoost detection results for binary classes with Grid Search optimization show that there were 12231
instances correctly detected as the normal class (0) by the model. The number of instances incorrectly detected as the abnormal class
(1) by the model is 95. Additionally, there were 139 instances incorrectly detected as the normal class (0) by the model, while the
number of instances correctly detected as the abnormal class (1) by the model is 3770. Similarly, for the XGBoost detection results
for binary classes with Random Search optimization, there were 12231 instances correctly detected as the normal class (0) by the
model. The number of instances incorrectly detected as the abnormal class (1) by the model is 95. Moreover, there were 138 instances
incorrectly detected as the normal class (0) by the model, whereas the number of instances correctly detected as the abnormal class
(1) by the model is 3771.

Additionally, ensemble model testing was done on multi-class data using Grid Search and Random Search for optimization.
The model measurement results for the multi-class with optimization Grid Search is shown in Table 6.

Table 6. The Multi-Class Model Measurement Results with Optimization Grid Search

Models Acc (%) Precision Recall F1-Score
RF + Grid Search 97.46 0.97 0.97 0.97
AdaBoost + Grid Search 97.35 0.97 0.97 0.97
GBM + Grid Search 97.43 0.97 0.97 0.97
XGBoost + Grid Search 97.47 0.97 0.97 0.97

The best accuracy value was found for the XGBoost model based on the outcomes of testing the ensemble model using Grid
Search optimization on multi-class data. Using Random Search optimization, ensemble model testing was also performed on multi-
class data, and the best model was determined to be XGBoost. A 97.47% accuracy was attained by both. The model measurement
results for the multi-class with optimization Random Search are shown in Table 7.
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Table 7. The Multi-Class Model Measurement Results with Optimization Random Search

Models Acc (%) Precision Recall F1-Score
RF + Random Search 97.39 0.97 0.97 0.97
AdaBoost + Random Search 97.35 0.97 0.97 0.97
GBM + Random Search 97.38 0.97 0.97 0.97
XGBoost + Random Search 97.47 0.97 0.97 0.97

The results of the XGBoost model’s attack detection classification using Grid Search and Random Search optimization on
multi-class data are shown in Figure 6. In terms of classification results for attack detection in IoT networks, the XGBoost model
outperforms the RF, AdaBoost, and GBM models. The experimental results indicate that optimization techniques such as Grid Search
and Random Search significantly impact model performance.

(a) (b)

Figure 6. The Classification Results of the XGBoost Model’s Attack Detection using Grid Search and Random Search Optimization
on Multi-Class Data

In Figure 6, the XGBoost detection results for multi-class with Grid Search optimization show several instances correctly
classified into each class, such as 112 instances in the ’Analysis’ class (True Positive for class 0), 352 instances in the ’DoS’ class
(True Positive for class 2), 3280 instances in the ’Exploits’ class (True Positive for class 3), 179 instances in the ’Fuzzers’ class (True
Positive for class 4), 7775 instances in the ’Generic’ class (True Positive for class 5), 3909 instances in the ’Normal’ class (True
Positive for class 6), 202 instances in the ’Reconnaissance’ class (True Positive for class 7), and 9 instances in the ’Worms’ class
(True Positive for class 8). However, some instances were misclassified, such as 73 instances misclassified as ’Generic’ and 100
instances misclassified as ’Reconnaissance’ in the ’Fuzzers’ class (False Positive for class 4), as well as other cases like 27 instances
misclassified as ’Fuzzers’ and 41 instances misclassified as ’Reconnaissance’ in the ’Generic’ class (False Positive for class 5). In the
XGBoost detection results for multi-class with Random Search optimization, several classes were correctly identified by the model,
such as ’Analysis’ with 112 True Positives, ’DoS’ with 352 True Positives, ’Exploits’ with 3280 True Positives, ’Fuzzers’ with 187
True Positives, ’Generic’ with 7775 True Positives, ’Normal’ with 3909 True Positives, ’Reconnaissance’ with 209 True Positives,
and ’Worms’ with 9 True Positives. However, there were also detection errors, such as 73 False Positives for the ’Generic’ class and
92 False Positives for the ’Reconnaissance’ class from the ’Fuzzers’ class, as well as 27 False Positives for the ’Fuzzers’ class and 41
False Positives for the ’Reconnaissance’ class from the ’Generic’ class.

3.3. Discussion
The study’s findings indicate that based on binary model measurements with Grid Search and Random Search optimization,

XGBoost accuracy produces the best results compared to the three ensemble models: RF, AdaBoost, and GBM. XGBoost produced
an accuracy result of 98.56% following optimization using Grid Search and Random Search. Similarly, XGBoost performs better
than other models based on the results of the ensemble model testing that uses Grid Search and Random Search optimization on
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multi-class data. XGBoost achieves a 97.47% accuracy rate on multi-class data. The findings of this study are consistent with the
research [4, 25], which found that the ensemble learning approach effectively identifies IoT network attacks. Comparing its accuracy
to research findings [28] using an ML algorithm, it was only 89%. However, the recommended method’s accuracy levels in this study
were 98.56% and 97.47%. Compared to the results of a study [35] that used an ensemble algorithm, and it only attained an accuracy
of 83.73%. Meanwhile, the method this study recommended produced accuracy results of 98.56% and 97.47%.

In line with Research [10], the XGBoost algorithm excels in handling complex and large-scale data due to its ability to address
overfitting and underfitting issues. This is achieved through regularization techniques applied during the boosting process, such as
incorporating penalty terms in the objective function and pruning the resulting decision trees. Furthermore, optimization techniques
like Grid Search and Random Search also play a crucial role in enhancing the overall performance. By adjusting model parameters
for better detection accuracy, these methods significantly improve the algorithm’s ability to handle a variety of datasets.

4. CONCLUSION
The results of this research are that XGBoost accuracy provides the best results based on binary model measurements with

Grid Search and Random Search optimization when compared to the three ensemble models, namely RF, AdaBoost, and GBM. After
optimization with Grid Search and Random Search, XGBoost yielded an accuracy value of 98.56%. Similarly, according to the
ensemble model testing results utilizing Grid Search and Random Search optimization on multi-class data, XGBoost demonstrates
superior performance compared to other models. The accuracy attained by XGBoost on multi-class data is 97.47%. This research
contributes to developing security in IoT networks based on enhanced ensemble learning utilizing Grid Search and Random Search
approaches. The underperformance of ensemble models in previous research can be attributed to a lack of studies on improving their
performance. Based on the experimental results of four ensemble learning models, namely RF, AdaBoost, GBM, and XGBoost, it
can be concluded that the XGBoost model exhibits the best performance in detecting attacks on IoT networks. This research provides
insights into the effectiveness of enhanced ensemble learning techniques in detecting IoT network attacks while highlighting the im-
portance of continuously developing appropriate security strategies to protect the increasingly interconnected network infrastructure
associated with IoT devices. Future research must test with a dataset that contains a higher number of variants of attack types and
other algorithms that were not tested in this study.
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