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ABSTRACT

Statistical pattern recognition is the process of using statistical techniques to obtain information and
make informed decisions based on data measurements. It is possible to solve the doubt inherent in the
objective function of the 2-Dimension Linear Discriminant Analysis by employing the symmetrical
2-Dimension Linear Discriminant Analysis approach. Symmetrical 2-dimensional linear discriminant
analysis has found widespread use as a method of introducing handwritten capital letters. Symmetric
2-DLDA, according to Symmetric 2-DLDA, produces better and more accurate results than Sym-
metric 2-DLDA. So far, pattern recognition has been based solely on computer knowledge, with no
connection to statistical measurements, such as data variation and Euclidean distance, particularly in
symmetrical images. As a result, the aim of this research is to create algorithms for recognizing capital
letter patterns in a wide range of handwriting. The ADL2-D symmetric method is used in this study
as the development of the ADL2-D method. The research results in an algorithm that considers the
left and right sides of the image matrix, as opposed to ADL2-D, which does not consider the left and
right sides of the image matrix. In pattern recognition, the results with symmetric ADL2-D are more
accurate.
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1. INTRODUCTION
The Pattern recognition is the process of recognizing patterns regularities in data by using automated algorithm. The process in

pattern recognition systems starts from the selection of patterns as sensors, then the patterns are entered into processing techniques,
representation charts, and finally, the process of modelling decision making [1].

In 2-Dimensional When it comes to pattern identification in this study, statistical classification is the most effective method [2].
Pattern recognition can be done using a variety of algorithms. Writing with LDA is a successful application of Linear Discriminant
Analysis (LDA). Latent Dirichlet Allocation (LDA) is a subspace investigation method for studying the low-dimension structure of
high-dimension data. In the vector space character projection, this method simultaneously minimizes the distribution within class
(Sw) and maximizes the distribution between classes (Sb).[3, 4].

Matrices such as images, and in general the image is not symmetrical Xi XiT, then the distribution matrix between classes
and distribution matrices in a class is defined not single. So there are a number of possible choices for determining the appropriate
objective function of LDA [5, 6]. The previous researches about LDA such as [7] were using LDA for face recognition which divide
images to same class and different class. Then [8] improved the present 2DLDA algorithm by its modification to more precise,
class-dependent estimations repeated separately for each class and evaluated several scenarios using the TIMIT corpus in phoneme-
based continuous speech recognition task. The next work be done by [9, 10] that improve the recognition accuracy of Local Binary
Pattern (LBP) on low-resolution face recognition. In 2017, [4] investigated new methods to address the problem of plant species
identification/classification using 2D digital leaves images and the approach used two features extraction methods based on one-
dimensional (1D) and two-dimensional (2D) and the Bagging classifier. Next research same with [11, 12], that [13] employed new
approach that matched the low resolution images with high resolution based on 2D-LDA. Based on recent researches, this paper
employs a novel approach to recognition handwritten of capital letter use a develop method from [14]. We know that everyone write
a capital letter such A letter in different style, and how to recognize it, so this paper will show that to recognize a capital letter as
a symmetric image by using symmetrical 2-dimension linear discriminant analysis. [15] The symmetric ADL2D method is more
accurate than other symmetrical methods because the recognition process partitions and then forms a left and right matrix. The level
of accuracy is presented in the form of a graph obtained from the value of the objective function of the two functions [16, 17].

This manuscript’s future writing will be organized as follows: Section 2 discusses Research Methodology and Materials; and
third section discusses and explains the research findings and discusses computational illustration and is followed by the fourth
section, which summarizes the study’s findings and makes recommendations for future research.

2. RESEARCH METHOD
2.1. Explaining Linear Discriminant Analysis

In the classification process, first measure the observational characteristics of the sample. Extract all the information contained
in the sample to calculate the sample-time value for a curve-shaped pattern, and the level of blackness of the pixels for a figure, as
shown in Figure 1 [4] .

Figure 1. Example measurement of letter patterns

If a data matrix is given H ∈ RN×n, LDA method intents to encounter a transformation K ∈ RN×1 that assigns each ai
column from matrixH , for 1 ≤ i ≤ p, in the P dimension space to the bi vector in the dimension l space. NamelyK : hi ∈ RN×n →
bi = KThi ∈ Rl(l < P ). In other words, LDA intents to encounter a vector space K spanned by where K = [k1, k2, . . . , kl], so
that each hi is projected to K by [18].

(kT1 .hi, . . . , k
T
l .hi)

T ∈ Rl (1)
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Consider that the initial data in H is subdivided into k classes so that H = {
∏

1,
∏

2, . . . ,
∏
k}, where

∏
i loads ni the data

points of classi and
∑k
i=1 pi = p. The classic LDA intents to encounter the optimal transformation of G so that the class structure of

the initial high-dimensional space data is converted into a low-dimensional space. [18, 19].
The transformation to a lower dimension subspace is used in LDA is

yi = KTxi (2)

where K is the transformation to a subspace. Usually also written with (y1, . . . , yp) = KT (x1, . . . , xp) atau Y = KTX . The
main purpose of LDA is to find the value of K so that classes can be more detached in the transformation space and can conveniently
be identified from the others. In the Linear Discriminant Analysis method, there are two distribution matrices, namely the in-class
distribution matrix symbolized by Sw, and the inter-class distribution matrix symbolized by Sb, each construed as follows:

Sw =

c∑
i=1

∑
xk∈

∏
i

[xk −mi][xk −mi]
T (3)

Sb =

c∑
i=1

ni[mi −m][mi −m]T (4)

Where pi is the number of fragment in the class xi , and mi is the average image of-i and m is the overall average. The class average

formula and the overall average is as follows: mi = 1
ni

∑
x∈

∏
i
x is the average of the i-class, and m = 1

n

∑k
i=1

∑
x∈

∏
i
x is the

overall average. General optimizations in Linear Discriminant Analysis:

maxkJ(k) = tr
Sb(Y )

Sw(Y )
= tr

KTSb(X)K

KTSw(X)K
(5)

This research are applied research that apply symmetric 2-D linear Discriminant Analysis to recognize handwritten of capital
letter that has a symmetric form. We use testing data and training data. The training data are capital letter from computer based,
whereas the testing data are handwritten capital letter. The procedure of this research shown in flow chart below

Figure 2. Statistical pattern recognition model
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Set of figure {Xi}ni=1 and label of each class, testing data is handwritten capital letter
L0, R0 inisialization
Frequency c for orthogonalisazion
Inisialization

a) L← L0, R← R0

b) Compute Mk, k = 1, 2, . . .K and M
Mk is average of each class, and M is overall average

c) t← 0
Do
Compute SRW , S

L
W , S

R
b , S

L
b

R← R+ δ ∂J∂R
l← L+ δ ∂J∂L
t← t+ 1
if (t mod c)=0
R← eigenvector from (SLW )−1SLb
L← eigenvector from (SRW )−1SRb
End if
Output L, R.

3. RESULT AND ANALYSIS
3.1. In 2-Dimensional Linear Discriminant Analysis

The preeminent discrepancy between the classic LDA and 2-DLDA that the researchers propose in this study is about data
representation. Classical LDA uses vector representations, whereas 2-DLDA works with data in matrix representations. In using
the 2-DLDA method, it will be seen that the representation leads to eigen-decomposition of the matrix with a smaller size. More
specifically, 2-DLDA involves eigen-decomposition matrices of r× r and c× c sizes, which are much smaller than the classical LDA
matrices. It has been agreed in 2-DLDA that a set of images is symbolized. by X = (X1, X2, . . . , Xn), Xi ∈ Rr×c. With the same
clairvoyance as the classical LDA, 2-DLDA tries to find a linear transformation

Yi = LTXiR (6)

so the different classes are detached. In other words, the image or image X must be transformed into the form Yi = LTXiR

Mi =
1

ni

∑
x∈

∏
i

X,M =
1

n

k∑
i=1

∑
x∈

∏
i

X (7)

Mi is here to measure the average in each column of theX matrix, because the calculation of the distance between the matrices
and the distance between the matrices and the distance between the matrices (based on discriminant statistics in statistics) will be
carried out in formula 8.

Suppose that is the average of the i-th class, 1 ≤ i ≤ k, and means the overall average. In 2-DLDA, researchers regard
images as two-dimensional signals and intend to detect two transformation matrices L ∈ and R ∈ and assigns each Hi member for
1 ≤ x ≤ n, to a Bi matrix so that Bi = LTHiR.

Similarly to classic LDA, 2-DLDA intends to encounter optimal L and R transformations (projections) so the class structure
of the initial high-dimensional space is converted to a low-dimensional space. An innate metric affinity between matrices is the
Frobenius[22]. The square of the distance from within-class and between classes can be calculated as below:

DW =

k∑
i=1

∑
x∈

∏
i

||X −Mi||2F , Db =

k∑
i=1

ni||Mi −M ||2F (8)
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This formula is used to measure the distance between classes and the distance within the class with Mi as in formula
trace(MMT ) = ||M ||2F , for a matrix M, so obtained :

DW = trace

 k∑
i=1

∑
x∈

∏
i

||X −Mi||2F

 (9)

Db = trace

(
k∑
i=1

ni||Mi −M ||2F

)
(10)

So trace here is the same as counting (summing) the values on the main diagonal of the matrix so that the form 8 becomes 9
and 10.

In low-dimensional space, the result of linear transformations L and R, the distance between classes and between-classes
becomes:

D̄W = trace

 k∑
i=1

∑
x∈

∏
i

LT (X −Mi)RR
T (X −Mi)

TL

 (11)

D̄b = trace

(
k∑
i=1

niL
T (X −Mi)RR

T (X −Mi)
TL

)
(12)

Because the image X must be linearly transformed so that the distance between the matrices and the distance in the matrix
must also be transformed so that the form 9 and 10 become the form 11 and 12.

The optimum of transformation of L and R will maximize D̄b and minimize D̄W , because of the difficulty of calculating the
optimum of L and R concurrently, the following is the algorithm for 2-DLDA. More particularly, for a settled R, we can calculate
the optimum of L by determining the same optimization problem with equation 12. By calculating L, we can then amend R by
determining another optimization problem as the only solution in equation 6.

The description of the calculation of L (bottom triangular matrix) and R (upper triangular matrix).

3.2. L Calculation
For a settled R, D̄W and D̄b can be rephrased as

D̄W = trace(LTSRWL), D̄b = trace(LTSRb L) (13)

where

SRW =

k∑
i=1

∑
x∈

∏
i

(X −Mi)RR
T (X −Mi)

T , SRb =

k∑
i=1

ni(X −Mi)RR
T (X −Mi)

T (14)

Optimal L can be calculated by figuring out the succeeding optimization problem: maxLtrace((LTSRWL)−1(LTSRb L). The
solution can be procured by clarifying the problem of generalizing the following eigenvalues: SRWx = λSRb x. Because SRW in general
it is nonsingular, the optimum L can be obtained by calculating an eigen-decomposition on (SRW )−1SRb . Remark that the size of the
matrices SRW and SRb are r × r (square matrix), which is smaller than the size of the matrices SW and Sb in the classic LDA [13].

3.3. R Calculation
Then calculate R for a settled L. D̄W and D̄b can be written back as

D̄W = trace(RTSLWR), D̄b = trace(RTSLb R) (15)

where

Algorithm Symmetric 2-DLDA . . . (Ismail Husein)
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SLW =

k∑
i=1

∑
x∈

∏
i

(X −Mi)LL
T (X −Mi)

T , SLb =

k∑
i=1

ni(X −Mi)LL
T (X −Mi)

T (16)

Optimal R can be calculated by figuring out the succeeding optimization problem: maxRtrace((RTSLWR)−1(RTSLb R). The
solution can be procured by clarifying the problem of generalizing the following eigenvalues: SLWx = λSLb x. Because SRW in general
it is nonsingular, the optimum R can be obtained by calculating an eigen-decomposition on (SLW )−1SLb . Remark that the size of the
matrices SLW and SLb are r × r (square matrix).

3.4. Symmetrical 2-Dimension Linear Discriminant Analysis (Symmetrical 2-DLDA)
It has been stated in the previous chapter that the classification approach with 2-Dimension Linear Discriminant Analysis (2

DLDA) raises a fundamental problem of doubt: There are two ways to delineate in-class distribution matrices SW .

SW (XXT ) =

k∑
j=1

∑
xi∈πi

(Xi −Mj)(Xi −Mj)
T

SW (XTX) =

k∑
j=1

∑
xi∈πi

(Xi −Mj)
T (Xi −Mj)

and there are two ways to delineate the distribution matrix between classes Sb.

Sb(XX
T ) =

k∑
j=1

nj(Mj −M)(Mj −M)T

Sb(X
TX) =

k∑
j=1

nj(Mj −M)T (Mj −M)

Consequently, in the space of transformation can be written

Sb(Y Y
T ), Sb(Y

TY ), SW (Y Y T ), SW (Y TY )

In general, images are not symmetrical Xi 6= XT
i , then

Sb(Y Y
T ) 6= Sb(Y

TY ),

Sw(Y Y T ) 6= Sw(Y TY )

For this argument, the objective function of LDA is dubious, which raises a number of choices:

J1 = tr
Sb(Y Y

T )

Sw(Y Y T )

J2 = tr
Sb(Y

TY )

Sw(Y TY )

J3 = tr

[
Sb(Y Y

T )

Sw(Y Y T )
+
Sb(Y

TY )

Sw(Y TY )

]
J4 = tr

[
Sb(Y

TY )

Sw(Y TY )

Sb(Y Y
T )

Sw(Y Y T )

]
J5 = tr

[
Sb(Y Y

T ) + Sb(Y
TY )

Sw(Y Y T ) + Sw(Y TY )

]
[14]
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Symmetrical 2-Dimensional Linear Discriminant Analysis in solving the ambiguous problem above inspired by a key obser-
vation: if the picture is symmetrical, namely Xi = XT

i , then

Sw(XXT ) = SW (XTX),

Sb(XX
T ) = Sb(X

TX)

The solution of this problem uses a new data representation that is symmetric linear transformation.(
0 Y Ti
Yi 0

)
= ΓT

(
0 Xi

XT
i 0

)
Γ, Γ =

(
0 L
R 0

)
In Fukunaga (1990), matrix is defined as: σ1 0 0

0
. . .

...
0 . . . σn


that is, the diagonal matrix is mainly the value of the variance of the data and other elements 0. The linear transformation above is
equivalent to the linear transformation Yi = LTXiR and Y Ti = RTXT

i L. We also have∥∥∥∥( 0 XT
i

Xi 0

)
− Γ

(
0 Yi
Y Ti 0

)
ΓT
∥∥∥∥2 = 2||Xi − LYiRT ||2

Therefore, optimization using (L,R) is equivalent to optimization using Γ .
Other than that, by using symmetric linear transformations produced a theorem:

Theorem 1: The single objective function of LDA for2-DLDA is

JADL2−D = tr
Sb(Y Y

T )

Sw(Y Y T )
= tr

Sb(Y
TY )

Sw(Y TY )
(17)

JADL2−D = tr

(
RTSLb R

RTSLWR
+
LTSRb L

LTSRWL

)
(18)

Using theorem 1, in the case non symmetrics matrices which cause Sw and Sb in X space to be doubly defined it also causes
Sw and Sb in Y space to be doubly defined. So

J ′1 = tr
Sb(Y Y

T )

Sw(Y Y T )
= tr

RTSLb R

RTSLwR

J ′2 = tr
Sb(Y

TY )

Sw(Y TY )
= tr

LTSRb L

LTSRwL

In an independent optimization approach, to get R can be done by maximizing J ′1 (reject J ′2) and then obtaining L by maxi-
mizing J ′2 (rejecting J ′1). This is not consistent in optimizing the objective function, which is when maximizing J ′1, J ′2 has decreased
and vice versa. This problem can be solved by two techniques namely first, when maximizing J ′1, must calculate J ′2. But, on the
other hand also need to know how to combine J ′1 and J ′2. The simple combination that can be done is J = J ′1 + J ′2, i.e.:

J = tr
RTSRWR+ LTSLb L

RTSRwR+ LTSLWL
(19)

Secondly is how to optimize the objective function. The result to maximizingmaxRJ can be simply done by calculating eigenvectors

from, the same calculations as the Linear Discriminant Analysis method.
However, the objective function described in equation 19 cannot be used to determine the trace of a single ratio of the two

distribution matrices. This happens because the objective function cannot be solved in the same direction through eigenvector
calculations (same as standard LDA). However, this can be overcome by developing an efficient algorithm using the gradient-up
approach. This approach reduces objective functions. The derivative of the matrix function is done by using the basic matrix algebra

Algorithm Symmetric 2-DLDA . . . (Ismail Husein)
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contained in Fukunaga’s book (1990). The results are shown in the following Lemmas:
Lemma 2: Let PL = LTSbRL, QL = LTSRWL, PR = RTSLb R, and QR = RTSbLR
Dervative of objective function JADL2−D in equation (20) as follow
For ∂J

∂R obtained

∂
∂R tr

RTSL
b R

RTSL
wR

= 2SLb RQ
−1
R − 2SLWRQ

−1
R PRQ

−1
R and

∂
∂R tr

LTSR
b L

LTSR
wL

= 2
∑K
k=1

∑
Ai∈πk

(Hi −Mk)TLQ−1L LT (Hi −Mk)R

−2
∑K
k=1(Mk −M)TLQ−1L PLQ

−1
L LT (Mk −M)R

(20)

For ∂J∂L obtained [14]

∂
∂L tr

LTSR
b L

LTSR
wL

= 2SRb LQ
−1
L − 2SRWLQ

−1
L PLQ

−1
L and

∂
∂L tr

RTSL
b R

RTSL
wR

= 2
∑K
k=1

∑
Ai∈πk

(Hi −Mk)RQ−1L RT (Hi −Mk)TL

−2
∑K
k=1(Mk −M)RQ−1R PRQ

−1
R RT (Mk −M)TL

(21)

Using the explicit gradient formula above, an algorithm can be developed like algorithm 1 to facilitate the classification applied
to computer visualization, following an efficient algorithm using the gradient-up approach.

The flow of using ADL2-D to ADL2-D Symmetrical in pattern recognition:
Enter the image that will be the object of handwriting capital letter pattern recognition
Algorithm 1 Symmetrical 2-DLDA using Gradient
Input

a) Set of figure {Xi}i = 1n and label of each class
b) L0, R0 inisialization
b) Frequency c for orthogonalisazion

Inisialization

a) L← L0, R← R0

b) Compute Mk, k = 1.2. . . .K and M
Mk is average of each class, and M is overall average

b) t← 0

Do
Compute SRW , S

L
W , S

R
b , S

L
b

R← R+ δ ∂J∂R
L← L+ δ ∂J∂L
t← t+ 1
if (tmodc) = 0
R← eigenvector from (SLW )−1SLB
L← eigenvector from (SRW )−1SRB
endif
Output L, R [23]

3.5. Application of the use of Symmetrical 2-Dimension Linear Discriminant Analysis Method in an Example of Character
Pattern Recognition

To facilitate understanding of Linear Discriminant Analysis (LDA) and 2-Dimension Linear Discriminant Analysis (2-DLDA),
researchers present how to recognize patterns of a character using these methods and how they compare with each other. The
following are examples of 2 characters A and B, with each character A and B having two patterns.
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Each character pattern above is represented in a 6 × 6 = 36 elements matrix, then the matrix is detached into 6 classes,
Hi =

∏
1,
∏

2, . . . ,
∏

6. Xi = 0 if the element represented is a dot and Xi = 1 if the element represented is ], the representation
matrix as follow:

H1 =


0 0 1 1 0 0
0 1 0 0 1 0
1 0 1 1 0 1
1 0 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 1


In the example of the characters above, it can be seen that the characters A1 and A3 characters are symmetrical characters, but the
matrix of character representation is not a symmetrical matrix. Since in the pattern recognition process there must be training data
(training set) and test data (testing set) then in this research example, we consider H1 and H2 as training data, H3 and H4 as testing
data. This aims to see whether the H3 pattern is similar to the H1 pattern and whether the H4 pattern is similar to the H2 pattern.

For the pattern recognition process, then each character representation matrix is partitioned into k = 2, k = 3, and k = 6
classes viz.
In high-dimensional data
The average of each class is

M1 = 2, 0553 M2 = 0, 92912 M3 = 0, 0726266 M4 = −0, 18354
M5 = −0, 386472 M6 = 0, 05335 M7 = −0, 09874 M8 = −0, 26913
M9 = −0, 07844

Overall average M = 0.2331295.

Algorithm Symmetric 2-DLDA . . . (Ismail Husein)
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Linear Discriminant Analysis Method
Eigenvalue matrix in-class distribution (Sw) above is

eigenvalue(SW ) =



−0.0000
−0.0000
0.0000
0.0000
0.0000
0.0000
0.7703
2.9668
3.9791
9.7268
13.1248
17.8440
30.8847
96.9425
603.0483


trace(Sw) = 779.2891. Trace is the number of eigenvalues in a square matrix of size n × n which is also the sum of the

diagonal elements of the matrix.
The in-class distribution matrix eigenvalue (Sw) above is

eigenvalue(SW ) =



−0.0000
−0.0000
−0.0000
−0.0000
0.0000
0.0000
0.0000
0.0000
73.1690


trace(Sb) =number of diagonal elements (Sb) = 73.1690.
Optimum objective function Symmetric LDA = tr(Sb)

tr(Sw) = 73.1690
779.821 = 0.093827

Based on subsection 3.3 we show that the result that to recognize the different type of handwritten capital letter, can use 2-D
LDA and Symmetric 2-D LDA. At first, we must partition it and count the average of each matrices, count the eigenvalue of those
matrices to have separate L and R. At the last count the objective function to know that this method more efficient than the other LDA
method.

The comparation Symmetric 2-DLDA with the 2D-LDA showed in graphic below. The following graphics show the differ-
ences in pattern recognition and classification using 2-Dimensional Linear Discriminant Analysis and Symmetric 2-Dimensional
Discriminant Analysis with 15 iterations. To produce this image, at first calculates the accuracy of the classification and the value
of the objective function using a validity chart by dividing the data matrix into 2 parts, 1 part to be tested, namely patterns H1 and
H2 as training data and patterns H3 and H4 as testing data. We partitioned the image into k = 2, k = 3, and k = 6. The objective
function is calculated using the algorithm described in chapter 3. In the graphics, the blue color represents the objective function
of the classification using ADL2-D Symmetrical, while the red color represents the objective function of the classification using
ADL2-D.
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For k=2

For k=3

For k=6

4. CONCLUSION
Symmetrical ADL2-D considers the symmetrical nature of the image, and transforms the image into an upper triangular ma-

trix and a lower triangular matrix with the aim of making pattern recognition, especially handwriting patterns more accurate.The
problem of doubt created by the objective function of the 2-Dimensional Linear Discriminant Analysis can be dealt with prior to
implementing the symmetrical 2-Dimension Linear Discriminant Analysis approach by resolving the issue before using the sym-
metrical 2-Dimension Linear Discriminant Analysis approach. As a result, there is a complete objective function. By dividing the
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traction formulation (Sw) by the inter-class distribution matrix (Sw), the symmetrical 2-DLDA formula was obtained (Sb). The
all-encompassing objective function includes everything.

In application, this method to recognize handwriting of capital letter, with testing data that handrwitten capital letter style,
and training data are capital letter of computer base, we can see that the images that form a symmetric character but not symmetric
matrices can separate into same class and between class, become L matrice and R matrice, at the end, based on objective function
graphically show that 2D-LDA is more efficient than the other method of LDA. In addition, an efficient computational algorithm for
solving objective functions in symmetric 2-DLDA is provided. 2-DLDA gives better and more accurate results than 2-DLDA when
applied to high-dimensional data. It is necessary to do calculations by generating this method for further research to solve multi-linear
discriminant problem.
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Image Texture Analysis and Color Model in The Advanced Image Processing of Thermal Images of Horses Following Exercise,”
Animals, vol. 12, no. 4, 2022.

[12] and Liu Li, J.,Chen, Z., “Low-Resolution Face Recognation of Multi-Scale Blocking CS-LBP and Weighted PCA,” Interna-
tional Journal of Pattern Recognition and Artificial Intelligence, vol. 30, no. 10, 2018.

[13] Y. Zhao, D., Chen, Z., Liu, C., Peng, “Two-Dimensional Linear Discriminant Analysis for Low-Resolution Face Recognition,”
IEEE, 2018.

[14] H. Luo, D., Ding, C., and Huang, “Symmetric Two Dimensional Linear,” in University of Texas at Arlington Press, 2019.

Matrik: Jurnal Managemen,Teknik Informatika, dan Rekayasa Komputer,
Vol. 21, No. 2, Maret 2022: xx – xx



Matrik: Jurnal Managemen,Teknik Informatika, dan Rekayasa Komputer r 399

[15] I. H. Gerhard Wilhelm Weber, Burcu Gurbuz, Herman Mawengkang, “Rumour Propogation : An operational Research Ap-
proach by Computional and Information Theory,” CEJOR, vol. 4, no. 4, 2022.

[16] I. Husein, A. Suhada, P. Chetthamrongchai, A. P. Peressypkin, A. S. Nurrohkayati, V. H. Ca, H. T. Hoi, J. W. Grimaldo Guer-
rero, and M. Kavitha, “Scheduling for A Container Supply Chain to Minimize Costs Using The Meta-Innovation Approach,”
Industrial Engineering and Management Systems, vol. 20, no. 4, pp. 662–671, 2021.

[17] H. Anthony Anggrawan, Christofer Satria, “Smart Campus : Model Baru Enterprise Architecture STMIK Bumigora Mataram
dalam Manajemnt Tata Kelola TIK Berbasis TOGAF ADM,” Jurnal Mantik Penusa, vol. 2, no. 2, pp. 127–136, 2018.

[18] A. A. Yahya, J. Tan, and M. Hu, “A Novel Handwritten Digit Classification System Based on Convolutional Neural Network
Approach,” Sensors, vol. 21, no. 18, pp. 1–26, 2021.

[19] Y. Du, Y. Guo, M. Dou, F. Yang, I. Husein, and I. Pustokhina, “Experimental Iinvestigation of Carbonated Water Injection
Incorporated with Optimum Concentration of Chemical Agents in Ultra-Low Permeable Reservoirs,” Energy Reports, vol. 7,
pp. 3607–3613, 2021.

Algorithm Symmetric 2-DLDA . . . (Ismail Husein)



400 r ISSN: 2476-9843

Matrik: Jurnal Managemen,Teknik Informatika, dan Rekayasa Komputer,
Vol. 21, No. 2, Maret 2022: xx – xx


	INTRODUCTION
	RESEARCH METHOD
	Explaining Linear Discriminant Analysis

	RESULT AND ANALYSIS
	In 2-Dimensional Linear Discriminant Analysis
	L Calculation
	R Calculation
	Symmetrical 2-Dimension Linear Discriminant Analysis (Symmetrical 2-DLDA) 
	Application of the use of Symmetrical 2-Dimension Linear Discriminant Analysis Method in an Example of Character Pattern Recognition

	CONCLUSION

