Klasifikasi Data Log Intrusion Detection Sistem (Ids) Dengan Decision Tree C4.5

  • Thifal Baraas
  • Akbar Juliansyah Universitas Bumigora
  • Ahmad Ashril Rizal
Keywords: Klasifikasi, Algoritma C4.5, Data Log, Intrusion Detection Sistem

Abstract

Abstrak

Browsing atau kegiatan menjelajahi internet menjadi salah satu aktivitas yang sering dilakukan pada zaman kini. Baik anak-anak hingga orang dewasa menjadi pengguna internet. Akan tetapi para pengguna internet tidak mengetahui jika internet juga bisa menjadi ancaman terutama adanya serangan-serangan yang menyerang sistem keamanan jaringan. Untuk mendeteksi adanya aktivitas yang mencurigakan yang melalui jaringan dibutuhkan bantuan dari IDS (Intrusion Detection Sistem). Ketika terjadi banyak serangan yang masuk, IDS tidak bisa menanganinya secara akurat, hal ini mengakibatkan aktivitas normal di dalam jaringan bisa dianggap sebagai serangan dari hacker atau sebaliknya. Data mining adalah prses yang digunakan untuk menemukan hubungan dari data-data untuk mendapatkan sebuah kesimpulan dari data tersebut. Algoritma C4.5 merupakan salah satu algoritma yang digunakan untuk membuat pohon keputusan. Metode pohon keputusan mengubah fakta yang sangat besar menjadi pohon keputusan yang merepresentasikan aturan. Aturan dapat dengan mudah dipahami dengan bahasa alami. Dengan mengklasifikasi data log IDS dengan algoritma C4.5 dapat mengurangi terjadinya kesalahan IDS dalam menentukan aktivitas yang termasuk serangan atau bukan. Hasil penelitian menunjukkan data log IDS dapat diklasifikasikan dengan algoritma C4.5 dengan tingkat akurasi model adalah 96.371% yang membuktikan bahwa model ini dapat digunakan dalam menentukan aktivitas yang termasuk serangan atau bukan.

Abstract

Browsing or surfing the internet is one of the activities that are often done today. Both children and adults become internet users. However, internet users do not know the internet can also be a threat, especially the attacks that attack the network security system. To detect suspicious activity through the network, assistance from IDS (Intrusion Detection System) is needed. When there are many incoming attacks, IDS cannot handle it accurately, this results in normal activities on the network can be considered as an attack from hackers or vice versa. Data mining is a process used to find relationships from data to get a conclusion from that data. C4.5 algorithm is one algorithm used to make a decision tree. The decision tree method converts very large facts into decision trees that represent rules. Rules can be easily understood with natural language. By classifying the IDS log data with the C4.5 algorithm it can reduce the occurrence of IDS errors in determining which activities are included or not. The results showed the IDS log data can be classified with the C4.5 algorithm with a 96.371% accuracy rate of the model which proves that this model can be used in determining activities that are included as attacks or not.

Published
2019-12-31
Section
Articles