Classification of Atopic Dermatitis and Psoriasis Skin Diseases Using Residual Network (ResNet-50)
Abstract
Background: Atopic dermatitis and psoriasis are common skin diseases with similar symptoms, characterized by abnormally red or inflamed epidermal lesions and varying degrees of skin thickening. However, they are distinct conditions, making it crucial to understand how to differentiate between them. This understanding can help reduce stigma and the risk of comorbidities, thereby improving patients' quality of life and preventing more serious health risks.
Objective: The aim of this research is to increase accuracy in classifying the skin diseases atopic dermatitis and psoriasis using the Residual Network (ResNet-50) model without overfitting, and compare it with the MobileNet model to find the best approach.
Method: The method used in this study is the ResNet-50 architecture for skin disease classification, namely atopic dermatitis and psoriasis. The selection of the ResNet-50 model is based on the use of shortcut connections that allow the application of deeper networks without experiencing the problem of vanishing gradients.
Result: The results showed that the best accuracy reached 92.75% for training data and 88.00% for testing data, with a data ratio of 80%:10%:10%. In addition, the confusion matrix results from the best model showed that the precision, recall, and F1 score values for both diseases were between ≥80% and ≤96%.
Conclusion: The ResNet-50 method in scenario 1 outperformed other scenarios, improving classification accuracy and enhancing diagnostic effectiveness and medical practice development.
References
[1] H. I. Pratiwi and R. Kamardi, “Pengembangan Sistem Web Sebagai Diagnosa Dini Penyakit Alergi Kulit Dermatitis Atopik Dengan Metode Forward Chaining,” Widyakala J, vol. 6, no. 2, p. 167, 2019.
[2] Bakhtiar, “Faktor Risiko, Diagnosis, dan Tatalaksana Dermatitis Atopik pada Bayi dan Anak,” J. Kedokt. dan Kesehat. Maranatha, vol. 9, no. 2, pp. 188–198, 2020.
[3] A. R. Heriyanto, A. D. Panca, I. I. Habibi, V. Z. Wardhana, and A. Equatora, “Optimalisasi Kesadaran Penanganan Penyakit Kulit Di Rutan I Bandung,” Med. Nutr. J. Ilmu Kesehat., vol. 2, no. 1, pp. 1–10, 2024, doi: 10.5455/mnj.v1i2.644.
[4] F. D. K. Dewi, “Terapi Pada Psoriasis,” J. Med. Hutama, vol. 02, no. 02, pp. 402–406, 2021.
[5] A. Izzati and O. T. Waluya, “Gambaran penerimaan diri pada penderita psoriasis,” J. Psikol. Esa Unggul, vol. 10, no. 02, p. 126366, 2018.
[6] D. Padilla, A. Yumang, A. L. Diaz, and G. Inlong, “Differentiating Atopic Dermatitis and Psoriasis Chronic Plaque using Convolutional Neural Network MobileNet Architecture,” 2019 IEEE 11th Int. Conf. Humanoid, Nanotechnology, Inf. Technol. Commun. Control. Environ. Manag. HNICEM 2019, pp. 0–5, 2019, doi: 10.1109/HNICEM48295.2019.9073482.
[7] T. Tukar and P. Bhavana, “Deteksi dan Klasifikasi Penyakit Kulit,” pp. 1096–1101, 2021.
[8] C. Umam and L. B. Handoko, “Convolutional Neural Network (CNN) Untuk Identifkasi Karakter Hiragana,” in Prosiding Seminar Nasional Lppm Ump, 2020, vol. 0, no. 0, pp. 527–533, [Online]. Available: https://semnaslppm.ump.ac.id/index.php/semnaslppm/article/view/199.
[9] Faiz Nashrullah, Suryo Adhi Wibowo, and Gelar Budiman, “The Investigation of Epoch Parameters in ResNet-50 Architecture for Pornographic Classification,” J. Comput. Electron. Telecommun., vol. 1, no. 1, 2020, doi: 10.52435/complete.v1i1.51.
[10] S. F. Aijaz, S. J. Khan, F. Azim, C. S. Shakeel, and U. Hassan, “Deep Learning Application for Effective Classification of Different Types of Psoriasis,” J. Healthc. Eng., vol. 2022, 2022, doi: 10.1155/2022/7541583.
[11] D. M. R. Sari, S. Nurmaini, D. P. Rini, and A. I. Sapitri, “Dermatitis Atopic and Psoriasis Skin Disease Classification by using Convolutional Neural Network,” Comput. Eng. Appl. J., vol. 12, no. 1, pp. 1–10, 2023, doi: 10.18495/comengapp.v12i1.419.
[12] M. Sharma, B. Jain, C. Kargeti, V. Gupta, and D. Gupta, “Detection and Diagnosis of Skin Diseases Using Residual Neural Networks (RESNET),” Int. J. Image Graph., vol. 21, no. 5, 2021, doi: 10.1142/S0219467821400027.
[13] F. A. Febriyanti, “Image Processing Dengan Metode Convolutional Neural Network (Cnn) Untuk Deteksi Penyakit Kulit Pada Manusia,” Kohesi J. Sains Dan Teknol., vol. 3, no. 10, pp. 21–30, 2024, [Online]. Available: https://ejournal.warunayama.org/kohesi.
[14] E. Oktafanda, “Klasifikasi Citra Kualitas Bibit dalam Meningkatkan Produksi Kelapa Sawit Menggunakan Metode Convolutional Neural Network (CNN),” J. Inform. Ekon. Bisnis, vol. 4, no. 3, pp. 72–77, 2022, doi: 10.37034/infeb.v4i3.143.
[15] P. Winardi and E. Setyati, “Identifikasi Jenis Daging dengan Menggunakan Algoritma Convolution Neural Network,” J. Inf. Syst. Hosp. Technol., vol. 3, no. 02, pp. 82–88, 2021, doi: 10.37823/insight.v3i02.178.
[16] N. D. Miranda, L. Novamizanti, and S. Rizal, “Convolutional Neural Network Pada Klasifikasi Sidik Jari Menggunakan Resnet-50,” J. Tek. Inform., vol. 1, no. 2, pp. 61–68, 2020, doi: 10.20884/1.jutif.2020.1.2.18.
[17] L. Hakim, H. R. Rahmanto, S. P. Kristanto, and D. Yusuf, “Klasifikasi Citra Motif Batik Banyuwangi Menggunakan Convolutional Neural Network,” J. Teknoinfo, vol. 17, no. 1, p. 203, 2023, doi: 10.33365/jti.v17i1.2342.
[18] Widi Hastomo, Nur Aini, Adhitio Satyo Bayangkari Karno, and L.M. Rasdi Rere, “Metode Pembelajaran Mesin untuk Memprediksi Emisi Manure Management,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 11, no. 2, pp. 131–139, 2022, doi: 10.22146/jnteti.v11i2.2586.
This work is licensed under a Creative Commons Attribution 4.0 International License.