Technology Biomechanic-Based Design of Knee Protector Generator for Portable Electricity Generation to Support Military Operations in the Field

  • Andik Sugiarta Politeknik Angkatan Darat, Malang, Indonesia
  • Kasiyanto Kasiyanto Politeknik Angkatan Darat, Malang, Indonesia
  • Dekki Widiatmoko Politeknik Angkatan Darat, Malang, Indonesia
  • Mokhammad Syafaat Politeknik Angkatan Darat, Malang, Indonesia
  • Afif Achmad Politeknik Angkatan Darat, Malang, Indonesia
  • Iqra Asif Riphah International University, Pakistan
Keywords: Biomechanic, Charging, Generator, Gearbox, Portable

Abstract

Background: In the 5.0 era which depends on electrical energy, innovation is needed to overcome the limitations of batteries in electronic devices. An innovative device has been created that uses knee joint movement to produce renewable energy.
Objective: Knee movements are converted into electrical energy through a special gearbox that rotates a generator, converting the energy to a power bank as a storage medium.
Methods: This study used an experimental method.
Result: This research produces 5.6 Watts of power, providing an eective solution for charging batteries in mobility conditions.
Conclusion: By utilizing knee joint movements and biomechanical analysis, this tool can utilize dierences in force, angle and speed of movement to produce the required electricity.

References

[1] N. Devi, D. Erwanto, and Y. Utomo, “DESAIN RANSEL PENGHASIL LISTRIK DENGAN MEMANFAATKAN TENAGA GERAK BERJALAN MANUSIA,” Multitek Indonesia: Jurnal Ilmiah, vol. 12, no. 2, pp. 104–113, 2018.
[2] M. K. A. A. Khan et al., “Biomechanical Knee Energy Harvester,” 2020 International Conference on Advanced Materials, Information Systems and Mechanical Engineering (AMISM 2020), no. December, pp. 20–24, 2020, doi: 10.1109/AMISM51515.2020.00007.
[3] H. Fu et al., “Rotational energy harvesting for self-powered sensing,” Joule, vol. 5, no. 5, pp. 1074–1118, 2021, doi: 10.1016/j.joule.2021.03.006.
[4] Agus. C. A. Praditya Tampubolon, “Laporan Status Energi Bersih Indonesia,” Iesr, pp. 1–23, 2019, [Online]. Available: www.iesr.or.id
[5] M. Suprayadi, K. Suryadi, D. Widiatmoko, J. Teknik Elektronika Sistem Senjata, and P. P. Kodiklat Angkatan Darat Poltekad Kodiklatad Ksatrian Pusdik Arhanud BOX, “Smart Charging With Stepper Pada Sepatu Pdl Tni Sebagai Suply Alat Komunikasi Saat Patroli Di Daerah Perbatasan,” Journal Elkasista.
[6] N. Prastyanto et al., “Rancang Bangun Regulator Capasitor Bank Menggunakan Metode Fast Charge Untuk Sepatu Pdl Design and Construction of Bank Capacity Regulator Using Fast Charge Method for Military Boot Shoes,” Journal Elkasista, pp. 1–7.
[7] Y. W. Chong, W. Ismail, K. Ko, and C. Y. Lee, “Energy Harvesting for Wearable Devices: A Review,” IEEE Sens J, vol. 19, no. 20, pp. 9047–9062, 2019, doi: 10.1109/JSEN.2019.2925638.
[8] J. Fan, C. H. Xiong, Z. K. Huang, C. B. Wang, and W. Bin Chen, “A lightweight biomechanical energy harvester with high power density and low metabolic cost,” Energy Convers Manag, vol. 195, no. January, pp. 641–649, 2019, doi: 10.1016/j.enconman.2019.05.025.
[9] L. Xie, X. Li, S. Cai, G. Huang, and L. Huang, “Knee-braced energy harvester: Reclaim energy and assist walking,” Mech Syst Signal Process, vol. 127, pp. 172–189, 2019, doi: 10.1016/j.ymssp.2019.03.008.
[10] L. Zhang et al., “Knee Joint Biomechanics in Physiological Conditions and How Pathologies Can Affect It: A Systematic Review,” Appl Bionics Biomech, vol. 2020, 2020, doi: 10.1155/2020/7451683.
[11] M. Gad, B. Lev-Ari, A. Shapiro, C. Ben-David, and R. Riemer, “Biomechanical knee energy harvester: Design optimization and testing,” Front Robot AI, vol. 9, no. October, pp. 1–15, 2022, doi: 10.3389/frobt.2022.998248.
[12] M. Liu, F. Qian, J. Mi, and L. Zuo, “Biomechanical energy harvesting for wearable and mobile devices: State-of-the-art and future directions,” Appl Energy, vol. 321, no. June, p. 119379, 2022, doi: 10.1016/j.apenergy.2022.119379.
[13] L. Niu, X. Miao, G. Jiang, A. Wan, Y. Li, and Q. Liu, “Biomechanical energy harvest based on textiles used in self-powering clothing,” J Eng Fiber Fabr, vol. 15, no. 1800, 2020, doi: 10.1177/1558925020967352.
[14] L. Junrui, L. I. Xin, and Y. Hailiang, “Kinetic Energy Harvesting Toward Battery-Free IoT: Fundamentals, Co-Design Necessity and Prospects,” ZTE COMMUNICATIONS, vol. 19, no. 1, pp. 48–60, 2021, doi: 10.12142/ZTECOM.202101007.
[15] M. Junaldy, S. R. U. A. Sompie, and S. Patras, “Rancang Bangun Alat Pemantau Arus Dan Tegangan Di Sistem Panel Surya Berbasis Arduino Uno,” Jurnal Teknik Elektro dan Komputer, vol. 8, no. 1, pp. 9–14, 2019.
[16] I. D. Christanto, R. Diharja, M. Mardiono, P. D. Widayaka, and A. H. Yuwono, “Mirroring Display KWH Meter untuk Memantau Penggunaan Daya Listrik Menggunakan Mikrokontroler ESP32-CAM,” Jurnal Bumigora Information Technology (BITe), vol. 3, no. 2, pp. 161–174, 2022, doi: 10.30812/bite.v3i2.1613.
[17] D. H. Moon, D. Kim, and Y. D. Hong, “Development of a single leg knee exoskeleton and sensing knee center of rotation change for intention detection,” Sensors (Switzerland), vol. 19, no. 18, 2019, doi: 10.3390/s19183960.
[18] H. Zhang, H. Wang, Z. Zhang, Y. Pan, and X. Luo, “A negative-work knee energy harvester based on homo-phase transfer for wearable monitoring devices,” iScience, vol. 26, no. 7, p. 107011, 2023, doi: 10.1016/j.isci.2023.107011.
[19] K. T. Yoon and Y. M. Choi, “Biomechanical Regenerative Braking Energy Harvester: A Systematic Analysis,” International Journal of Precision Engineering and Manufacturing - Green Technology, vol. 10, no. 2, pp. 437–456, 2023, doi: 10.1007/s40684-022-00472-6.
Published
2024-01-10
How to Cite
Sugiarta, A., Kasiyanto, K., Widiatmoko, D., Syafaat, M., Achmad, A., & Asif, I. (2024). Technology Biomechanic-Based Design of Knee Protector Generator for Portable Electricity Generation to Support Military Operations in the Field. Jurnal Bumigora Information Technology (BITe), 5(2), 159-170. https://doi.org/https://doi.org/10.30812/bite.v5i2.3649
Section
Articles