The Autoregresiive Integrated Moving Average and Fuzzy Time Series Cheng Hybrid for Predicting Stock Price

  • Ignasia N.G. Neyun Universitas Sebelas Maret
  • Winita Sulandari Universitas Sebelas Maret
  • Isnandar Slamet Universitas Sebelas Maret
Keywords: stock, ARIMA, Hybrid, FTS Cheng


Background: PT Telkom Indonesia Tbk is the largest company in the telecommunications sector in Indonesia. PT Telkom's share price always rises every year, attracting investors to invest. In investing, it is very important to analyze shares in order to know the situation and condition of the shares.

Objective: This research aims to predict the share price of PT Telkom Indonesia Tbk.

Methods: The method used is the Autoregressive Integrated Moving Average (ARIMA)-Fuzzy Time Series Cheng hybrid method. Cheng's FTS model is able to overcome nonlinearity problems in ARIMA model residuals. In this research, the first modeling uses the ARIMA model, where the data is divided into two, namely January to November 2019 data used as training data, and December 2019 data used as testing data. Next, residual modeling was carried out with FTS Cheng. Hybrid forecasting is obtained by adding up the results of ARIMA and FTS Cheng forecasts.

Result: Model evaluation is based on MAPE values and in this study the MAPE value of the ARIMA-FTS Cheng hybrid model was obtained at 1.03\% for training data and 1.09\% for testing data.

Conclusion: The hybrid model has a MAPE value of less than 10\%, so it can be concluded that the ARIMA-FTS Cheng hybrid model can predict PT Telkom Indonesia Tbk stock closing price data accurately.


[1] Kustodian Sentral Efek Indonesia, “Investor Pasar Modal Tembus 10 Juta,” Publikasi PT Kustodian Sentral Efek Indonesia, no. November, pp. 1–3, 2022.
[2] M. M. I Made Adnyana, S.E., Dan Portofolio. 2020.
[3] L. Olivia, “Tumbuh 1,7%, Laba Telkom (TLKM) Tembus Rp 6,1 Triliun,” 10 Mei, 2022. .
[4] F. H. Mustapa and M. T. Ismail, “Modelling and forecasting S&P 500 stock prices using hybrid Arima-Garch Model,” Journal of Physics: Conference Series, vol. 1366, no. 1, 2019, doi: 10.1088/1742-6596/1366/1/012130.
[5] A. Swaraj, K. Verma, A. Kaur, G. Singh, A. Kumar, and L. Melo de Sales, “Implementation of stacking based ARIMA model for prediction of Covid-19 cases in India,” Journal of Biomedical Informatics, vol. 121, no. August, p. 103887, 2021, doi: 10.1016/j.jbi.2021.103887.
[6] C. D. Setiawan, W. Sulandari, and Y. Susanti, “Peramalan Harga Saham Pt Unilever Indonesia Menggunakan Metode Hibrida Arima-Neural Network,” Semnas Ristek (Seminar Nasional Riset dan Inovasi Teknologi), vol. 7, no. 1, 2023, doi: 10.30998/semnasristek.v7i1.6270.
[7] I. R. Al Kadry, J. Massalesse, and M. Nur, “Forecasting Inflation In Indonesia Using The Modified Fuzzy Time Series Cheng,” Jurnal Matematika, Statistika dan Komputasi, vol. 19, no. 1, 2022, doi: 10.20956/j.v19i1.21868.
[8] N. Setiawati, “Peramalan Harga Penutupan Saham Pt Telkom Indonesia (Persero) Tbk (IDX: TLKM) Menggunakan Fuzzy Time Series Cheng,” FMIPA, Universitas Islam Indonesia, 2020.
[9], “Telkom Indonesia (Persero) Tbk PT (TLKM),”, 2019. .
[10] M. B. Pamungkas, “Aplikasi Metode Arima Box-Jenkins Untuk Meramalkan Kasus Dbd Di Provinsi Jawa Timur,” The Indonesian Journal of Public Health, vol. 13, no. 2, p. 183, 2019, doi: 10.20473/ijph.v13i2.2018.183-196.
[11] R. Risma and S. Sahriman, “Perbandingan Estimasi Metode Kuadrat Terkecil Terboboti dan Metode Transformasi Box-Cox Pada Data Heteroskedastisitas,” ESTIMASI: Journal of Statistics and Its Application, vol. 1, no. 2, 2020, doi: 10.20956/ejsa.v1i2.10386.
[12] R. R. Barry and I. Bernarto, “Spurious Regression Analysis on Time Series Data From Factors Affecting Indonesian Human Development Indexs in 1990 – 2017,” JMBI UNSRAT (Jurnal Ilmiah Manajemen Bisnis dan Inovasi Universitas Sam Ratulangi)., vol. 7, no. 3, 2021, doi: 10.35794/jmbi.v7i3.30608.
[13] C. V. M. Sihombing and S. Martha, “Analisis Metode Hybrid Arima–Svr Pada Indeks Harga Saham Gabungan,” Bimaster: Buletin Ilmiah Matematika …, vol. 11, no. 3, pp. 413–422, 2022.
[14] H. Hassani and M. R. Yeganegi, “Selecting optimal lag order in Ljung–Box test,” Physica A: Statistical Mechanics and its Applications, vol. 541, 2020, doi: 10.1016/j.physa.2019.123700.
[15] E. Dulfitri Eha and Suwanda, “Pemodelan Fuzzy Time Series Cheng untuk Meramalkan Nilai Ekspor Migas di Indonesia,” Bandung Conference Series: Statistics, vol. 3, no. 2, 2023, doi: 10.29313/bcss.v3i2.7604.
[16] L. Fauziah, D. Devianto, and M. Maiyastri, “Peramalan Beban Listrik Jangka Menengah Di Wilayah Teluk Kuantan Dengan Metode Fuzzy Time Series Cheng,” Jurnal Matematika UNAND, vol. 8, no. 2, 2019, doi: 10.25077/jmu.8.2.84-92.2019.
How to Cite
Neyun, I., Sulandari, W., & Slamet, I. (2024). The Autoregresiive Integrated Moving Average and Fuzzy Time Series Cheng Hybrid for Predicting Stock Price. Jurnal Bumigora Information Technology (BITe), 5(2), 139-150.