TY - JOUR AU - Ni Putu Hendayanti AU - Maulida Nurhidayati PY - 2020/04/30 Y2 - 2025/04/19 TI - Perbandingan Metode Seasonal Autoregressive Integrated Moving Average (SARIMA) dengan Support Vector Regression (SVR) dalam Memprediksi Jumlah Kunjungan Wisatawan Mancanegara ke Bali JF - Jurnal Varian JA - Varian VL - 3 IS - 2 SE - Articles DO - https://doi.org/10.30812/varian.v3i2.668 UR - https://journal.universitasbumigora.ac.id/index.php/Varian/article/view/668 AB - Berbagai sumber pendapatan yang dapat dihasilkan dalam suatu daerah, salah satunya yaitu dalam sektor pariwisata. Seperti halnya sektor yang lain, sektor pariwisata juga memberikan banyak sumbangan bagi pembangunan ekonomi di suatu daerah maupun negara tujuan wisata. Indonesia memiliki banyak tujuan wisata daerah yang sudah terkenal hingga mancanegara salah satunya yaitu Pulau Bali. Bali merupakan daerah yang sudah memiliki kedudukan yang sejajar dengan daerah-daerah tujuan wisata lainnya yang ada di dunia. Sebagai suatu daerah yang sangat berpotensi dalam pengembangan wisata, maka pemerintah memberikan perhatian yang khusus dalam pengembangan pariwisata di Pulau Bali. Maka dari itu, perlu adanya peramalan jumlah kunjungan wisatawan mancanegara ke Bali yang nantinya bisa bermanfaat bagi pemerintah daerah maupun dinas pariwisata. Dalam hal ini, akan digunakan dua metode untuk meramalkan jumlah kunjungan wisatawan mancanegara ke Bali. Adapun metode yang digunakan yaitu Seasonal ARIMA dan Support Vector Regression (SVR). Hasil peramalan data out sampel dengan menggunakan metode SARIMA dan SVR menunjukkan bahwa metode SARIMA memiliki nilai MAPE lebih kecil dari pada SVR. Nilai MAPE motode SARIMA adalah 5,33% sedangkan metode SVR sebesar 19,74%. Begitu juga nilai MSE dan MAE dari metode SARIMA lebih kecil dari metode SVR.  Dari Penelitian yang dilakukan dapat disimpulkan bahwa model SARIMA merupakan motode yang lebih baik untuk memprediksi jumlah kunjungan wisatawan mancanegara ke Bali. ER -