Application of Mamdani’s Fuzzy Inference System in the Diagnosis of Pre-eclampsia

  • Grandianus Seda Mada Timor University, Indonesia
  • Maria Julieta Esperanca Naibili Timor University, Indonesia
  • Siprianus Septian Manek Timor University, Indonesia
  • Estevania Daonce Mau Universitas Timor, Indonesia
  • Wasim Raza University of Thal, Bhakkar Punjab Pakistan
Keywords: Diagnosis, Pre-eclampsia, Pregnant Women, Fuzzy Inference System, Mamdani

Abstract

Pre-eclampsia is the second of the top three causes of death in pregnant women after bleeding and followed by infection. By knowing the risk factors, early detection of pre-eclampsia in pregnant women needs to be done so that later it can be treated more quickly to prevent further complications. This study aims to design a practical application of a decision-making system for the diagnosis of pre-eclampsia in pregnant women using the Fuzzy Inference System (FIS) method so it can be used efficiently and effectively for the early diagnosis of pre-eclampsia. The method used in data analysis is the FIS Mamdani method with defuzzification using the centroid method. The designed system considers blood pressure and proteinuria as input variables and pre-eclampsia status as output variables. The research results show that the system has 7.27% of Mean Absolute Percentage Error (MAPE) value and when comparing the final diagnosis of the system and expert diagnoses (doctors) from 20 patients at two hospitals, it was found that the system diagnosis was 100% in accordance with the expert diagnoses.

References

Athiyah, U., Rosyadi, F. C. D. P., Saputra, R. A., Hekmatyar, H. D., Satrio, T. A., and Perdana, A. I. (2021). Diagnosa Resiko Penyakit Jantung Menggunakan Logika Fuzzy Metode Tsukamoto. Jurnal Ilmiah Rekam Medis dan Informatika Kesehatan, 11(1):31–40. https://doi.org/10.47701/infokes.v11i1.1045.
Away, G. A. (2014). The Shortcut of Matlab Programming ( Edisi Revisi ), volume 1. INFORMATIKA, Bandung.
Bardja, S. (2020). Faktor Risiko Kejadian Preeklampsia Berat/Eklampsia pada Ibu Hamil. EMBRIO: Jurnal Kebidanan, 12(1):18–30. http://doi.org/10.36456/embrio.v12i1.2351.
Chandra, B., Haning, S., Siokh, Y., Bulan, J., and Adhy, W. (2020). Prevalensi Proteinuria dengan Pemeriksaan Dipstik Urin pada Pasien Hipertensi di Wilayah Kerja Puskesmas Daerah Terpencil Kabupaten Rote Ndao. Cendana Medical Journal, 8(3):235–243. https://doi.org/10.35508/cmj.v8i3.3496.
Fiano, D. S. I. and Purnomo, A. S. (2017). Sistem Pakar Untuk Mendeteksi Tingkat Resiko Penyakit Jantung Dengan Fuzzy Inferensi (Mamdani). Informatics Journal, 2(2):64–78.
Lindayani, I. K. (2018). Skrining Pre Eklampsia. Jurnal Ilmiah Kebidanan, 6(1):47–52.https://doi.org/10.33992/jik.v6i1.1056.
Mada, G. S., Dethan, N. K. F., and Maharani, A. E. S. H. (2022). The Defuzzification Methods Comparison of Mamdani Fuzzy Inference System in Predicting Tofu Production. Jurnal Varian, 5(2):137–148.https://doi.org/10.30812/varian.v5i2.1816.
Masan, Y. B. (2019). Asuhan Kebidanan Berkelanjutan pada Ny. E.M.H dengan Preeklampsia Berat dan Berat Badan Lahir Rendah di Puskesmas Batakte Kecamatan Kupang Barat Periode 18 Februari-18 Mei Tahun 2019. Laporan Tugas Akhir Jurusan Kebidanan Politeknik Kesehatan Kemenkes Kupang.
Muhani, N. and Besral (2015). Pre-eklampsia Berat dan Kematian Ibu. Jurnal Kesehatan Masyarakat Nasional, 10(2):80–86.
Nabillah, I. and Ranggadara, I. (2020). Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut. JOINS (Journal of Information System), 5(2):250–255.https://doi.org/10.33633/joins.v5i2.3900.
Nassa, M. (2018). Analisis Program Revolusi Kesehatan Ibu dan Anak dan Dampaknya Terhadap Penurunan Angka Kematian Ibu dan Bayi. In Prosiding UGM Public Health Symposium.https://doi.org/10.22146/bkm.40614.
Niswati, Z., Paramita, A., and Mustika, F. A. (2016). Aplikasi Fuzzy Logic dalam Diagnosa Penyakit Diabetes Mellitus pada PUSKESMAS di Jakarta Timur. Jurnal Nasional Teknologi dan Sistem Informasi, 2(3):21–30.http://doi.org/10.25077/TEKNOSI.v2i3.2016.21-30.
Nizar, H., Shafira, A. S., Aufaresa, J., Awliya, M. A., and Athiyah, U. (2021). Perbandingan Metode Logika Fuzzy Untuk Diagnosa Penyakit Diabetes. Explore:Jurnal Sistem informasi dan telematika, 12(1):37–41.http://doi.org/10.36448/jsit.v12i1.1763.
Pardede, S. O., Maharani, P., and Nadeak, B. (2014). Proteinuria pada Anak. Majalah Kedokteran UKI, XXX(2):64–73.https://doi.org/10.33541/mkvol34iss2pp60.
Putra, P. A., Purnawan, I. K. A., and Putri, D. P. S. (2018). Sistem Pakar Diagnosa Penyakit Mata dengan Fuzzy Logic dan Nave Bayes. Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi), 6(1):35–46.http://doi.org/10.24843/JIM.2018.v06.i01.p04.
Rizki, S. N. and Maulana, A. (2018). Artificial Intellegence Untuk Mendeteksi Penyakit Kelenjar Getah Bening (Lymphadennopathy) Menggunakan Fuzzy Inference System (FIS) di Kota Batam. Jurnal Ilmiah Informatika, 6(1):54–61.https://doi.org/10.33884/jif.v6i01.434.
Ukkas, M. I., Palupi, S., and Pradiba, I. (2014). Sistem Pakar Diagnosa Jenis-Jenis Penyakit Demam Panas Pada Balita dengan Menggunakan Metode Fuzzy Logic Berbasis Web. Jurnal SEBATIK, 12(1):24–30.http://doi.org/10.46984/sebatik.v12i1.66.
Wantania, J. J. E. (2015). Hipertensi dalam Kehamilan. In Prosiding Pertemuan Ilmiah Tahunan Fetoaternal.
Wardani, R. S. (2014). Aplikasi Sistem Fuzzy untuk Diagnosa Penyakit Jantung Koroner (Coronary Heart Disease). Skripsi Program Studi Matematika FMIPA Universitas Negeri Yogyakarta.
Yogi, E. D., Hariyanto, and Sonbay, E. (2014). Hubungan Antara Usia Dengan Preeklampsia Pada Ibu Hamil Di POLI KIA RSUD Kefamenanukabupaten Timor Tengah Utara. Jurnal Delima Harapan, 3(2):10–19.https://doi.org/10.31935/delima.v1i1.40.
Yunus, M. (2017). Penerapan Fuzzy Expert System untuk Diagnosa Penyakit Telinga, Hidung dan Tenggorokan (THT). 15(1):51–53.http://doi.org/10.30812/matrik.v15i1.29.
Published
2023-10-31
How to Cite
[1]
G. Mada, M. Naibili, S. Manek, E. Mau, and W. Raza, “Application of Mamdani’s Fuzzy Inference System in the Diagnosis of Pre-eclampsia”, Jurnal Varian, vol. 7, no. 1, pp. 1 - 14, Oct. 2023.
Section
Articles