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ABSTRACT

In 2022, the high school dropout rate is the highest compared to other levels of education in Indonesia.
Seeing the urgency of the 12-year Compulsory Education program, completing education up to the high
school level is an important thing that needs to be considered. Thus, it is necessary to know the factors
that influence the dropout rate in the hope that this problem can be reduced. This study aims to model
the high school dropout rate using geographically weighted generalized poisson regression (GWGPR)
based on the factors that influence it. GWGPR is used if the response variable is overdispersed and
depends on the location observed. The results of this study indicate that each province has a differ-
ent regression model. The GWGPR model with the adaptive tricube kernel weighting function is the
best model because it has the smallest AIC value compared to other weighting functions. In Central
Sulawesi Province, the GWGPR model with the adaptive tricube kernel weighting function formed is
µ̂26 = exp (8, 1267− 0, 1267X4 + 0, 0344X5 + 0, 0957X6 + 0, 1173X7). With the significant vari-
ables are the average length of schooling, the percentage of the population aged 7-17 years who receive
PIP, the open unemployment rate, and the percentage of children who do not live with parents.
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A. INTRODUCTION
Until now, the development of the education sector has been a challenge in Indonesia. The government consistently strives to

improve the country’s participation and quality of education. One of the steps that has been taken is the increase in the duration of
compulsory education from 9 years to 12 years. This action is part of the government’s efforts to achieve the education development
goals of increasing the average years of schooling and reducing the dropout rate (Limbong & Setiadi, 2021). In 2022, the high school
dropout rate is the highest compared to other education levels, which is 1,38% or as many as 10.091 high school students dropped out
of school in the 2022/2023 academic year (BPS, 2022). Considering the urgency of the 12 Years Compulsory Education program,
completing studies up to the senior high school level is an important matter that needs to be considered. Therefore, it is necessary to
know the factors that affect the dropout rate in the hope that the problem can be reduced. Regression is one of the statistical methods
used to model the relationship between predictor variables and response variables. Regression aims to find a functional relationship
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between these variables and predict the value of the response variable based on the value of the given predictor variable (Septianto
et al., 2023).

The number of school dropouts in Indonesia is a critical indicator that requires serious attention. Statistical analysis of this
data often employs Poisson regression due to its nature as count data, which is assumed to follow a Poisson distribution. Poisson
regression, assuming equidispersion (where the mean and variance are equal), has become the standard approach. However, recent
studies have shown that this assumption is often violated in real-world contexts.

Data frequently exhibit overdispersion (where the variance exceeds the mean) or underdispersion (where the variance is less
than the mean), indicating that the traditional Poisson regression model may not always be appropriate. This inadequacy can lead to
biased parameter estimates and errors in statistical inference.

The knowledge gap arises when traditional Poisson regression models are applied universally without considering the presence
of overdispersion or underdispersion, leading to less accurate analytical results. Generalized Poisson Regression (GPR) has been
developed to bridge this gap as an alternative that can handle variance that deviates from the equidispersion assumption. GPR allows
for more flexible and accurate modeling, accommodating both overdispersion and underdispersion, thereby providing more reliable
outcomes in analyzing school dropout data. Generalized Poisson Regression modeling produces a global regression model for all
observation locations (Tyas et al., 2023).

However, further challenges emerge in spatial data analysis, where variability across locations can affect the model’s results. In
this context, Geographically Weighted Generalized Poisson Regression (GWGPR) offers a solution by integrating spatial elements
into the GPR model. GWGPR extends GPR by incorporating a weighting function based on Euclidean distance between observation
locations, allowing for more specific analysis tailored to the geographical characteristics of the studied regions (Mahmuda and Harini,
2014).

Based on research conducted by Hakim (2020) on the factors causing children to drop out of school using logistic regression, it
was found that the education of the head of the household, ownership of KIP/PIP, number of household members, working children,
poverty, and area of residence had a significant effect on children dropping out of school. Although it has the same case study, the
difference between this research and previous studies is that the method used is logistic regression on binary data in Aceh Province,
which does not consider the problem of overdispersion or spatial variability. In contrast, this study will use the Geographically
Weighted Generalized Poisson Regression (GWGPR) method to model the factors that influence high school dropouts throughout
Indonesia so that it can handle the problem of overdispersion and accommodate spatial effects.

In addition, other previous studies conducted by Sabtika et al. (2021) showed the effectiveness of the GWGPR model in cases of
postpartum mortality. As a result, this model has the lowest Akaike’s Information Criterion (AIC) value compared to other models.
This shows that GWGPR outperforms global models such as Poisson regression. Another study conducted by Safire & Purhadi (2023)
examined the factors that influence the number of diabetes mellitus cases in East Java using GWGPR and GWNBR (Geographically
Weighted Negative Binomial Regression). The results showed that the GWGPR model had a smaller corrected Akaike’s Information
Criterion (AICc) value than the GWNBR model. This shows that the GWGPR method is more appropriate. However, these two
previous studies did not explore the effects of different weighting functions in improving model accuracy. In fact, choosing the right
weighting function can significantly affect model results. Therefore, the gap between this research and the two previous research
is that this study will evaluate three adaptive weighting functions (adaptive Gaussian, adaptive bisquare, and adaptive tricube). By
exploring various weighting functions, this study aims to determine the weighting function that provides the best results in modeling
the factors causing school dropout.

Adatunaung et al. (2023) focused on the performance of various kernel functions in the Geographically Weighted Regression
(GWR) model to determine the factors affecting the Human Development Index in South Sulawesi Province. They found that the
adaptive tricube kernel weighting function outperformed the adaptive Gaussian and bisquare functions because it had the highest
R² and the lowest AIC values. This research emphasized the importance of selecting the appropriate weighting function, but these
findings have not yet been directly applied to the GWGPR model.

Based on the description above, this study aims to fill these gaps by not only applying GWGPR to the analysis of school dropout
data in Indonesia but also by carefully evaluating the performance of different weighting functions within this model. In this study,
the parameter estimation process will be conducted using three different adaptive kernel weighting functions: Gaussian, bisquare,
and tricube, to determine which weighting function is the best. Therefore, this research is expected to provide a new perspective on
how different weighting functions can enhance the effectiveness of GWGPR in capturing spatial variability and addressing the issues
of overdispersion and underdispersion in count data. Additionally, the results of this study are also expected to provide insights into
the factors that are suspected to influence the number of school dropouts in Indonesia, which can be used as a basis for government
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consideration in formulating educational policies in Indonesia.

B. RESEARCH METHOD
The data used in this study are secondary data obtained from KEMENDIKBUD, BPS, and KEMENPPPA. The variable used

is the number of high school dropouts in Indonesia in 2022 as the response variable. There are 7 predictor variables used, namely
the percentage of poor people (X1), The percentage of the population aged 10-17 years who work (X2), The percentage of the
population aged 0-17 years who are neglected (X3), the average length of schooling (X4), the percentage of the population aged
7-17 years who get PIP (X5), the open unemployment rate (X6), and the percentage of children who do not live with parents (X7).

Data analysis in this study used RStudio and SAS Studio software. The following are the stages of analysis carried out in this
study:

1. Input data used as research variables.
2. Conducting multicollinearity test based on VIF value.

The symptom of multicollinearity can be seen from the Variance Inflation Factor (VIF) value. If the VIF value < 10, it is stated
that there is no multicollinearity (Leonita et al., 2023). The VIF value can be formulated in the following equation:

V IF j =
1

1−R2
p

; p = 1, 2, . . . , k (1)

which R2
p is the coefficient of determination between the pth predictor variable and other predictor variables.

3. Conducting the Poisson distribution test.
The Kolmogorov-Smirnov test can be used to assess whether the observed data follows a Poisson distribution. The test hypoth-
esis is as follows (Tyas et al., 2023):
H0 : F (y) = F 0 (y) (The data follows a Poisson distribution).
H1 : F (y) ̸= F0 (y) (The data not follows a Poisson distribution).

Statistic test:

D = max |(F (y)− F0 (y))| (2)

which:
F (y) : Cumulative distribution function.
F0 (y) : Empirical value of the sample cumulative distribution.

If Dhit > D(1−α, n) or p− value < α then H0 rejected, or in other words, the data does not follow the Poisson distribution.
4. Test the assumption of equidispersion.

Equidispersion can be detected by determining the value of dispersion (θ), which is the deviance value divided by the degree
of freedom (db). Data is equidispersion if the dispersion value (θ) is equal to 1, if the dispersion value (θ) is less than 1 it
means underdispersion, and if the dispersion value (θ) is more than 1 it means overdispersion (Winata, 2023).

θ =
Deviance

db
(3)

which db = n − p, p is the number of parameters and n is the number of observations. The deviance value can be obtained
using the following equation:

Deviance = 2

n∑
i=1

(
yi ln

(
yi
ŷi

)
− (yi − ŷi)

)
(4)

which:
yi : Actual value of the i-th observed response variable.
ŷi : The estimated value of the i-th observed response variable.
n : Number of observations.
i : 1, 2, . . . , n.
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5. Modeling Generalized Poisson Regression.
The GPR model is similar to the Poisson regression model, which is as follows (Sari et al., 2023):

µ̂i = exp (β0 + β1Xi1 + β2Xi2 + . . .+ βkXik) (5)

which:
µi : The average number of events that occur in a given time interval.
β0 : Regression model intercept value.
β1, β2, . . . , βk : Regression coefficient of predictor variable 1 to k.
Xi1, Xi2, . . . , Xik& : The value of the 1st to k-th predictor variable of the i-th observation.

6. Conducting spatial heterogeneity test using Breusch-Pagan test.
Spatial heterogeneity can be tested using the Breusch-Pagan (BP) test which has the following hypothesis (Lumbantoruan et al.,
2023):
H0 : σ2

1 = σ2
2 = . . . σ2

n = σ2 (There is no spatial heterogeneity).
H1 : There is at least one σ2

i ̸= σ2; i = 1, 2, . . . , n (There is spatial heterogeneity).

Statistic test:

BP =

(
1

2

)
fTZ

(
ZTZ

)−1
ZT f ∼ χ2

p−1 (6)

which:
f : A 1× n vector withfi =

e2i
σ̂2 − 1.

ei : Residual at the i-th observation.
i : 1, 2, . . . , n.

σ2 : Variance of the residuals.
Z : Vector of normalized response variables for each observation.

The decision to reject H0 is obtained if the value of the Breusch-Pagan test statistic is greater than the critical value χ2
(α, p−1)

or the p-value is less than the significant level α.
7. Determining the optimum bandwidth using cross validation.

The selection of the optimum bandwidth is used to adjust the variance and bias of the parameter estimates. If the bandwidth
is large, it will cause a large bias because the model is too smooth. If the bandwidth is too small, it will cause a small bias
because the model is too coarse. The method used to determine the optimum bandwidth is Cross Validation (CV).

CV (h) =

n∑
i=1

(yi − ŷ̸=i (hi))
2 (7)

which:
n : Number of observations.
i : 1, 2, . . . , n.

yi : The i-th observation.
ŷ̸=i (hi) : The estimated value of yi conditional on the observation of location (ui, vi)

8. Calculating the Euclidean distance.
The distance between location id and location j is obtained from the euclidean distance which can be calculated using the
equation (Hong et al., 2021).

dij =

√
(ui − uj)

2
+ (vi − vj)

2 (8)

which:
ui : Latitude of the i-th location.
vi : Longitude of the i-th location.
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9. Determining the weight matrix.
Spatial weights calculated using adaptive kernel functions produce different bandwidth values for each observation location.
The adaptive kernel spatial weight function is categorized into adaptive Gaussian, adaptive squared, and adaptive tricube kernel
functions (Al-Hasani et al., 2021).

a. Adaptive Gaussian Kernel

Wij = exp

[
−1

2

(
dij
hi

)2
]

(9)

b. Adaptive Bisquare Kernel

Wij =


(
1−

(
dij

hi

)2
)2

, dij ≤ hi

0, dij > hi

(10)

c. Adaptive Tricube Kernel

Wij =


(
1−

(
dij

hi

)3
)

, dij ≤ hi

0, dij > hi

(11)

which:
dij : Euclidean distance between the i-th location and the j-th location.
hi : Bandwidth of the i-th location.

10. Implementing Geographically Weighted Generalized Poisson Regression modeling which includes:
a. Estimating the parameters of the GWGPR model.

In the GWGPR model, the method used to estimate the model parameters is the Maximum Likelihood Estimation (MLE)
method, with the GWGPR model likelihood function as follows (Tyas et al., 2023):

L ( β (ui, vi)) =

n∏
i=1

f (yi) =

n∏
i=1

(
µi

1 + θµi

)yi (1 + θyi)
yi−1

yi!
exp

(
−µi (1 + θyi)

1 + θµi

)
(12)

The likelihood function in Equation 12 is then converted into natural logarithm form (ln-likelihood) with the geographical
weights shown in Equation 13.

lnL∗ (β (ui, vi))

=

n∑
i=1

wij

[
yi

(
xT
i β(ui, vi)− ln(1 + θex

T
i β(ui,vi))

)
+ (yi − 1) ln (1 + θy1)− ln yi!−

ex
T
i β(ui,vi)(1+θyi)

1 + θex
T
i β(ui,vi)

] (13)

The process of obtaining parameter estimators of the GWGPR model is by deriving Equation 13 for each parameter and
then equating it to zero. However, the results cannot be done analytically because the results obtained are not close form,
so it is necessary to do iteration, namely Newton-Raphson iteration with the function as follows.

β(m+1) (uivi) = βm (uivi)−H−1
(m) (βm (uivi)) g(m) (βm (uivi)) (14)

b. Testing the GWGPR model parameters both simultaneously and partially.
Simultaneous testing is done using the Likelihood Ratio Test (LRT) method with the following hypothesis (Purhadi et al.,
2021):
H0 : β1 (ui, vi) = β2 (ui, vi) = . . . = βk (ui, vi) = 0 (All predictdo not affect no effect on the response variable).
H1 : There is at least one βp (ui, vi) ̸= 0 (There is at least one predictor variable that affects the response variable).
with i = 1, 2, . . . , n and p = 1, 2, . . . , k
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Statistic test:

G = −2lnΛ = −2 ln

(
L(ω̂)

L(Ω̂)

)
= 2

(
lnL

(
Ω̂
)
− lnL (ω̂)

) (15)

which:
L (ω̂) : Likelihood function without involving predictor variables.

L
(
Ω̂
)

: Likelihood function involving predictor variables.

Rejection criteria:
Reject H0 if G > χ2

(α, n−p−1) or the p-value is less than the significant level α, which means that at least one predictor
variable is significant to the response variable.

Partial test is used to find out which predictor variables have a significant effect on the response variabel with the following
hypothesis (Widyaningsih & Budiawan, 2023):
H0 : βp (ui, vi) = 0 (The p-th variable has no significant effect).
H1 : There is at least one βp (ui, vi) ̸= 0 (The p-th variable has significant effect).
with i = 1, 2, . . . , nandp = 1, 2, . . . , k

Statistic test:

W =

 β̂p (ui, vi)

se
(
β̂p (ui, vi)

)
2

(16)

which:
β̂p (ui, vi) : Estimated value for parameter βp in i-th location.

se
(
β̂p (ui, vi)

)
: Estimated standard error βp in i-th locatin.

Rejection criteria:
Reject H0 if the test statistic W is greater than the critical value W > χ2

(α, db=1) or the p-value is less than the significant
level α.

c. Selecting the best model by looking at the smallest AIC value.
The calculation of the Aikake Information Criterion (AIC) value is as follows (Mahama et al., 2020).

AIC = −2lnL
(
β̂
)
+ 2p (17)

which:
L
(
β̂
)

: The maximum value of the likelihood function of the model parameters.

p : Number of parameters in the model.

The data analysis steps above are presented as a flowchart as shown in Figure 1.
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Figure 1. Research Data Analysis Flow Chart

C. RESULT AND DISCUSSION

1. Multicollinearity Test

Multicollinearity testing is used to identify whether the regression model’s predictor variables correlate. Table 1 presents
the VIF value for each predictor variable.

Table 1. Multicollinearity Test
Predictor Variables VIF Value

X1 3,659
X2 2,795
X3 2,778
X4 1,688
X5 1,620
X6 2,191
X7 1,976

Based on Table 1, it can be seen that all predictor variables, X1 to X7 have VIF values less than 10, so it can be concluded
that there is no multicollinearity or no correlation between predictor variables and other predictor variables.

2. Poisson Distribution Test

Data distribution testing to determine whether the data on the number of high school dropouts is Poisson distributed or not.
The method used in this test is the Kolmogorov-Smirnov test with the following hypothesis:

H0 : Data on the number of high school dropouts is Poisson distributed.
H1 : Data on the number of high school dropouts is not Poisson distributed.
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Table 2. Poisson Distribution Test
Kolmogorov sminorv Test p-value

0,147 0,458

The Kolmogorov smirnov test results in Table 2 show that the p-value is 0,458 greater than α (0,05), so it is decided that H0

fails to be rejected. So it can be concluded that the data on the number of high school dropouts follows the Poisson distribution.

3. Equidispersion Assumption Test
One way to determine whether or not overdispersion occurs is to use the dispersion value, which can be seen in the following

table.

Table 3. Equidispersion Test
Deviance df Dispersi

8758,1 26 336,85

Based on Table 3, the deviance value is 8758.1 and if divided by the degree of freedom, the dispersion value will be 336.85,
where the value is more than 1, then the Poisson regression model of the number of high school dropouts in Indonesia experiences
a case of overdispersion. Because the model experiences a case of overdispersion, then one of the alternative methods that can
be used is Generalized Poisson Regression.

4. GPR Modeling
The Generalized Poisson Regression model is a statistical model implemented to analyze the relationship between variables

that experience overdispersion. The parameters estimation value β is obtained as follows:

Table 4. GPR Parameter Estimation Value
Parameters Estimate

β0 7,748
β1 0,236
β2 -0,130
β3 0,613
β4 -0,974
β5 -0,116
β6 0,903
β7 0,731

Based on Table 4, it can be seen that the Generalized Poisson Regression model formed is as follows:

µ = exp (7, 748 + 0, 236X1 − 0, 130X2 + 0, 613X3 − 0, 974X4 − 0, 116X5 + 0, 903X6 + 0, 731X7)

5. Spatial Heterogeneity Test
Spatial heterogeneity testing is conducted to determine whether the data to be spatial modeling contains spatial heterogene-

ity. Geographically Weighted Regression analysis will be appropriate if there is diversity between provinces. The effect of spatial
heterogeneity can be known by using the Bruesch-Pagan test statistic with the following hypothesis:
H0 : There is no spatial heterogeneity.
H1 : There is spatial heterogeneity.

Table 5. Bruesch-Pagan Test
Breusch-Pagan Test p-value

17,571 0,014
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Based on Table 5, the p-value is 0,014 smaller than α (0,05) which means H0 is rejected, it can be concluded that there is
spatial heterogeneity or differences in variation between provinces, which allows the GWGPR model to be applied in this study.

6. Determination of Optimum Bandwidth

The first step before performing GWGPR modeling is determining each location’s weight matrix. The weighting functions
used are adaptive gaussian kernel, adaptive bisquare kernel, and adaptive tricube kernel where each weighting requires an opti-
mum bandwidth value. Determination of the optimum bandwidth (h) value using cross validation (CV) criteria. The adaptive
kernel weighting produces a bandwidth value that differs for each location. The optimum bandwidth value using CV can be
found in Table 6.

Table 6. Optimum Bandwidth
Location Adaptive Gaussian Kernel Adaptive Bisquare Kernel Adaptive Tricube Kernel

Aceh 25,597 42,541 42,543
North Sumatra 23,170 39,986 39,987
West Sumatra 21,591 38,222 38,223

...
...

...
...

West Papua 28,249 36,281 36,281
Papua 34,318 42,550 42,550

7. Euclidean Distance Calculation

After getting the optimum bandwidth value, the next step is to determine the weight matrix W at each i-th location by first
calculating the Euclidean distance (dij) to all locations. Suppose a sample of the Euclidean distance between two points, namely
Aceh and North Sumatra Provinces, is given as follows, and the calculation results are presented in Table 7.

d(1, 2) =
√
(ui − uj)

2
+ (vi − vj)

2

=

√
(4, 41533− 2, 36304)

2
+ (96, 9956− 99, 2161)

2

=

√
(2, 05229)

2
+ (−2, 2205)

2

=
√
4, 211894244 + 4, 93062025

=
√
4, 211894244 + 4, 93062025

= 3, 0237

Table 7. Euclidean distance between provinces

Location Aceh
North

Sumatra
West

Sumatra
. . .

West
Papua

Papua

Aceh 0 3,0237 6,2172 . . . 36,2864 42,5557
North Sumatra 3,0237 0 3,3136 . . . 33,8107 39,9998
West Sumatra 6,2172 3,3136 0 . . . 32,2212 38,2354

...
...

...
...

...
...

...
West Papua 36,2864 33,8107 32,2212 . . . 0 6,4909

Papua 42,5557 39,9998 38,2354 . . . 6,4909 0

8. Weighting Matrix

a. Adaptive Gaussian Kernel Weights Matrix

The following is an example of calculating the weights between Aceh and North Sumatra Provinces with the adaptive
Gaussian kernel function. The calculation results are presented in Table 8.

Vol. 8, No. 1, October 2024, pp 97–112
DOI: https://doi.org/10.30812/varian.v8i1.4248

https://doi.org/10.30812/varian.v8i1.4248


106 | Nur Azizah JURNAL VARIAN | e-ISSN: 2581-2017

W(1, 2) = exp

[
− 1

2

(
dij

hi

)2
]

= exp

[
− 1

2

(
3,0237

25,59729

)2
]

= 0, 993

Table 8. Adaptive Gaussian Kernel Function Weight Matrix

Location Aceh
North

Sumatra
West

Sumatra
. . .

West
Papua

Papua

Aceh 1 0,993 0,971 . . . 0,366 0,251
North Sumatra 0,991 1 0,990 . . . 0,345 0,225
West Sumatra 0,959 0,988 1 . . . 0,328 0,208

...
...

...
...

...
...

...
West Papua 0,438 0,489 0,522 . . . 1 0,974

Papua 0,463 0,507 0,538 . . . 0,982 1

b. Adaptive Bisquare Kernel Weights Matrix
The following is an example of calculating the weights between Aceh and North Sumatra Provinces with the adaptive

square kernel function. The calculation results are presented in Table 9.

W(1, 2) =

(
1−

(
dij

hi

)2
)2

=

(
1−

(
3,0237

42,54138

)2
)2

= 0, 990

Table 9. Adaptive Bisquare Kernel Function Weight Matrix

Location Aceh
North

Sumatra
West

Sumatra
. . .

West
Papua

Papua

Aceh 1 0,990 0,958 . . . 0,074 0
North Sumatra 0,989 1 0,986 . . . 0,081 0
West Sumatra 0,948 0,985 1 . . . 0,084 0

...
...

...
...

...
...

...
West Papua 0 0,017 0,045 . . . 1 0,937

Papua 0 0,013 0,037 . . . 0,954 1

c. Adaptive Tricube Kernel Weights Matrix
The following is an example of calculating the weights between Aceh and North Sumatra Provinces with the adaptive

tricube kernel function. The calculation results are presented in Table 10.

W(1, 2) =

(
1−

(
dij

hi

)3
)3

=

(
1−

(
3,0237

42,54271

)3
)3

= 0, 999

Table 10. Adaptive Tricube Kernel Function Weight Matrix

Location Aceh
North

Sumatra
West

Sumatra
. . .

West
Papua

Papua

Aceh 1 0,999 0,991 . . . 0,055 0
North Sumatra 0,999 1 0,998 . . . 0,062 0
West Sumatra 0,987 0,998 1 . . . 0,064 0
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Location Aceh
North

Sumatra
West

Sumatra
. . .

West
Papua

Papua

...
...

...
...

...
...

...
West Papua 0 0,007 0,027 . . . 1 0,983

Papua 0 0,005 0,021 . . . 0,989 1

9. GWGPR Model
a. Simultaneous Testing

The parameters that have been estimated are then tested to see whether the parameters have a significant effect simulta-
neously on the variable number of high school dropouts or not. The simultaneous test is done with the likelihood ratio test
G. The hypothesis used is as follows:
H0 : All predictor variables do not affect the response variable.
H1 : There is at least one predictor variable that affects the response variable.

Table 11. Likelihood Ratio Test
Weighting Function lnL(Ω̂) lnL (ω̂) G

Adaptive Gaussian Kernel -243,666 -1253,061 2018,79
Adaptive Bisquare Kernel -224,079 -1240,6 1993,041
Adaptive Tricube Kernel -224,108 -1239,85 1991,483

Based on Table 11, the value of G with adaptive gaussian kernel weighting function is 2018.79, the value of G with
adaptive bisquare kernel weighting function is 1993.041, the value of G with adaptive tricube kernel weighting function is
1991.483, and the value of χ2

(0,05;34−7−1) is 38.885 or the value of G from the three weighting functions is greater than
χ2
(0,05;34−7−1) then H0 is rejected, so it can be concluded that the predictor variables simultaneously significantly affect the

variable number of dropouts, whether using the adaptive Gaussian kernel, adaptive square kernel, or adaptive tricube kernel
weighting function.

b. Partial Testing
Partial testing is used to determine the variables that significantly affect the number of high school dropouts with the

GWGPR model in each observation location. The test statistic used is the Wald test. H0 is rejected or the variable affects
the number of high school dropouts if W > χ2

0,05; 1(3, 841). The following are the variables that have a significant effect in
each province.
1. Partial Testing of GWGPR Adaptive Gaussian Kernel

Table 12. Significant Variables in Each Province with Adaptive Gaussian Kernel
Affected Variables Provinces

X6 Aceh, North Sumatra, West Sumatra, Riau, Jambi, South Sumatra, Bengkulu, Riau Islands

X6, X7 Lampung, Bangka Belitung Islands, Special Capital Region of Jakarta, West Java, Central
Java, Special Region of Yogyakarta, East Java, Banten, Bali, West Nusa Tenggara, West
Kalimantan, Central Kalimantan, South Kalimantan, East Kalimantan, North Kalimantan

X5, X6, X7 East Nusa Tenggara, North Sulawesi, Central Sulawesi, South Sulawesi, Southeast Su-
lawesi, Gorontalo, West Sulawesi, Maluku, North Maluku, West Papua, Papua

We will present partial parameter testing at the 26th research location, Central Sulawesi Province, as an example.

Table 13. Parameter Estimation of GWGPR Adaptive Gaussian Kernel of Central Sulawesi Province
Parameter Estimate Wald

β0 7,7111 170,4929*
β1 -0,0126 0,7058
β2 0,0005 0,0011
β3 0,0217 1,2108
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β4 -0,0771 1,9890
β5 0,0252 4,7723*
β6 0,1065 9,4599*
β7 0,0766 7,0075*

Based on Table 13, it can be seen that there are four parameters, namely β0, β5, β6 and β7, which have a test statistic value
of W > χ2

0,05; 1(3, 841) then H0 is rejected, so it can be concluded that at the 5% significance level, the parameters β0,
β5, β6 and β7 have a significant effect on the model. Parameters that do not significantly affect the model, namely β1, β2,
β3 and β4 need to be removed from the model so that the final GWGPR model with adaptive gaussian kernel weighting
function in Central Sulawesi Province is formed:

µ̂26 = exp (7, 7111 + 0, 0252X5 + 0, 1065X6 + 0, 0766X7)

2. Partial Testing of GWGPR Adaptive Bisquare Kernel

Table 14. Significant Variables in Each Province with Adaptive Bisquare Kernel
Affected Variables Provinces

X6 Aceh, North Sumatra, West Sumatra, Riau
X6, X7 Jambi, Sumatera Selatan, Bengkulu, Lampung, Kepulauan Bangka Belitung, Kepulauan

Riau, Daerah Khusus Ibukota Jakarta, Jawa Barat, Jawa Tengah, Daerah Istimewa Yo-
gyakarta, Jawa Timur, Banten, Bali, Nusa Tenggara Barat, Kalimantan Barat, Kalimantan
Tengah, Kalimantan Selatan, Kalimantan Timur, Kalimantan Utara

X3, X5, X7 West Papua, Papua
X5, X6, X7 East Nusa Tenggara, Central Sulawesi, South Sulawesi, Southeast Sulawesi, Gorontalo,

West Sulawesi
X3, X5, X6, X7 North Sulawesi, Maluku, North Maluku

We will present partial parameter testing at the 26th research location, Central Sulawesi Province, as an example.

Table 15. Parameter Estimation of GWGPR Adaptive Bisquare Kernel of Central Sulawesi Province
Parameter Estimate Wald

β0 8,0970 122,243*
β1 -0,0261 1,975
β2 -0,0205 0,817
β3 0,0433 2,311
β4 -0,1250 3,533
β5 0,0341 6,126*
β6 0,0980 4,848*
β7 0,1169 10,892*

Based on Table 15, it can be seen that there are four parameters, namely β0, β5, β6andβ7, which have a test statistic value
of W > χ2

0,05; 1(3, 841) then H0 is rejected, so it can be concluded that at the 5% significance level the parameters β0,
β5, β6 and β7 have a significant effect on the model. Parameters that do not have a significant effect on the model, namely
β1, β2, β3 and β4, need to be removed from the model so that the final GWGPR model with adaptive bisquare kernel
weighting function in Central Sulawesi Province is formed:

µ̂26 = exp (8, 0970 + 0, 0341X5 + 0, 0980X6 + 0, 1169X7)
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3. Partial Testing of GWGPR Adaptive Tricube Kernel

Table 16. Significant Variables in Each Province with Adaptive Tricube Kernel
Affected Variable Provinces

X6, X7 Aceh, North Sumatra, West Sumatra, Riau, Jambi, South Sumatra, Bengkulu, Lampung,
Bangka Belitung Islands, Riau Islands, Special Capital Region of Jakarta, West Java,
Central Java, Special Region of Yogyakarta, East Java, Banten, Bali, West Kalimantan,
Central Kalimantan, South Kalimantan, East Kalimantan, North Kalimantan

X4, X6, X7 West Nusa Tenggara
X4, X5, X6, X7 East Nusa Tenggara, Central Sulawesi, South Sulawesi, Southeast Sulawesi, West Su-

lawesi
X3, X5, X7 West Papua, Papua

X3, X5, X6, X7 North Sulawesi, Gorontalo, Maluku, North Maluku

We will present partial parameter testing at the 26th research location, Central Sulawesi Province, as an example.

Table 17. Parameter Estimation of GWGPR Adaptive Tricube Kernel of Central Sulawesi Province
Parameter Estimate Wald

β0 8,1267 135,918*
β1 -0,0259 2,096
β2 -0,0226 1,029
β3 0,0450 2,538
β4 -0,1267 4,060*
β5 0,0344 6,893*
β6 0,0957 4,996*
β7 0,1173 11,606*

Based on Table 17, it can be seen that there are five parameters, namely β0, β4, β5, β6 and β7, which have a test statistic
value of W > χ2

0,05; 1(3, 841) then H0 is rejected, so it can be concluded that at the 5% significance level the parameters
β0, β4, β5, β6 and β7 Parameters that do not have a significant effect on the model, namely β1, β2, and β3, need to be
removed from the model so that the final GWGPR model with adaptive bisquare kernel weighting function in Central
Sulawesi Province is formed:

µ̂26 = exp (8, 1267− 0, 1267X4 + 0, 0344X5 + 0, 0957X6 + 0, 1173X7)

10. Best Model Selection

Table 18. Parameter Estimation of GWGPR Adaptive Tricube Kernel of Central Sulawesi Province
Model AIC
GPR 1297,348

GWGPR Adaptive Gaussian Kernel 566,605
GWGPR Adaptive Bisquare Kernel 565,253
GWGPR Adaptive Tricube Kernel 565,200

Based on Table 18 shows that the model with the smallest AIC value is the GWGPR model with the adaptive tricube kernel
weighting function, so it can be concluded that the GWGPR model using the adaptive tricube kernel weighting function is better
used to model the data on the number of high school dropouts in Indonesia in 2022 compared to the adaptive gaussian kernel
and adaptive bisquare kernel weighting functions. In addition, from the table above, it can also be seen that the AIC value of the
GWGPR model is smaller than the AIC value of the GPR model. This result is consistent with the results of a study conducted by
Sabtika et al. (2021), which also showed that the local model, GWGPR, is superior in capturing spatial heterogeneity compared
to the global model or GPR. In addition, research by Nisa et al. (2022) and Adatunaung et al. (2023) also showed that the adaptive
tricube kernel weighting function, performs better in regions with non-uniform spatial distribution by providing a more flexible
weighting scheme that adapts to the local data density.
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11. Interpretation of the Best GWGPR Model Results
Based on the results obtained, it is known that the GWGPR model with adaptive tricube kernel weighting function is better

at analyzing the number of high school dropouts in Indonesia. The GWGPR adaptive tricube kernel model formed in Central
Sulawesi Province is as follows:

µ̂26 = exp (8, 1267− 0, 1267X4 + 0, 0344X5 + 0, 0957X6 + 0, 1173X7)

With the significant variables being the average years of schooling (X4), the percentage of the population aged 7-17 who
received PIP (X5), the open unemployment rate (X6) nd the percentage of children who do not live with their parents (X7).
Meanwhile, based on the model, it can be explained that:
1. The estimated value for parameter β0 is 8,1267, which means that the number of high school dropouts will remain as

exp (8, 1267) = 3383, 6152 ≈ 3384 students without being influenced by other variables.
2. The estimated value for parameter β4 is 0,1267 which means that for every additional 1 year of average years of schooling, it

will be inversely proportional to the number of high school dropouts by exp (0, 1267) = 1, 1351 ≈ 1 student.
3. The estimated value for parameter β5 is 0,0344, which means that for every additional 1 percent of the population aged 7-17

who received PIP, it will be proportional to the increase in the number of high school dropouts by exp (0, 0344) = 1, 0350 ≈ 1

student.
4. The estimated value for parameter β6 is 0,0957, which means that for every 1 percent increase in the open unemployment

rate, the number of high school dropouts will increase by exp (0, 0957) = 1, 1004 ≈ 1 student.
5. The estimated value for parameter β7 is 0,1173, which means that for every additional 1 percent of children who do not live

with their parents, the number of high school dropouts will increase by exp (0, 1173 ) = 1, 1245 ≈ 1 student.

D. CONCLUSION AND SUGGESTION
The best GWGPR model based on the smallest AIC value is the Adaptive Tricube Kernel GWGPR model. The resulting model

varies from one province to another, so it will produce 34 models. One of them is the GWGPR model with adaptive tricube kernel
weighting function in Central Sulawesi Province:

µ̂26 = exp (8, 1267− 0, 1267X4 + 0, 0344X5 + 0, 0957X6 + 0, 1173X7)

With significant variables being the average years of schooling (X4), the percentage of the population aged 7-17 who received
PIP (X5), the open unemployment rate (X6), and the percentage of children who do not live with their parents (X7).

In future research, it is recommended that other distance metrics, such as Manhattan, be used and that research samples be used
at smaller levels, such as districts or cities and villages so that they can sharpen spatial analysis in an area.
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