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ABSTRACT

Many industries have suffered financial losses as a result of the COVID-19 epidemic. The stock mar-
ket’s movement has been impacted by this circumstance. Due to the influence of some people, a large
number of individuals with limited trading knowledge are attempting to participate in the stock market.
Market volatility should be understandable in order to gain profit instead of having losses. Therefore,
it’s essential to comprehend the market of the future through analysis of the data. The purpose of this
study is to use ARIMA-GARCH to predict the Indonesian stock market price during. The period cov-
ered by the dataset is January 2020December 2022. The training data indicates that ARIMA (2,1,2) is
the best model for ARIMA. The results showed that data residual fitted by ARIMA (2,1,2)-GARCH
(1,2) exhibits heteroscedasticity, according to the residual analysis. The MAPE score is 2%, which is
relatively small. It means that ARIMA (2,1,2)-GARCH (1,2) is good enough for forecasting the Jakarta
Composite Index.
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A. INTRODUCTION
The Covid-19 outbreak, first detected on March 2, 2020, in Indonesia, led to new regulations that significantly impacted eco-

nomic activities. This crisis caused substantial financial losses for businesses, resulting in salary reductions and layoffs, which
particularly affected millennial and Gen-Z workers (Fadly, 2021). In response, many of these individuals turned to the capital market
to generate additional income. Two primary factors driving millennials’ and Gen-Z’s interest in stock investment were the new oppor-
tunities and the increased spare time to explore stock investments, along with a growing awareness of the importance of saving and
investing for the future. Systematic risk cannot be mitigated through diversification, as this risk originates from fluctuations in market
conditions. Market conditions are affected by external economic factors and estimating systematic risk is a key factor in investment
decisions (Robbetze and Swanepoel, 2022) (Puspitaningtyas, 2017).

There are multi elements that has certain impacts on stock price of single firm, such as operation, dividend , performance, and
macro elements (Thach and Huy, 2021). A notable development in the financial landscape during this period was the increased
volatility in financial time series data, including stock price indexes. High volatility, marked by rapid and unpredictable stock price
fluctuations, led to market instability (Aklimawati and Wahyudi, 2013; Septiana et al., 2021). During the second and third quarters
of 2020, the Jakarta Composite Index (JKSE) experienced significant volatility, attributed to a surge in retail investors engaging in
frequent and high-risk transactions (Fadly, 2021). Retail investors and stock influencers played a crucial role in this phenomenon by
entering the market during declines, which increased the number of investors, transaction frequency, and transaction value. However,

115

https://doi.org/10.30812/varian.v7i2.2103
mailto:agus,eka@president.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


116 | Agus Sofian Eka Hidayat JURNAL VARIAN | e-ISSN: 2581-2017

this also introduced risks associated with high volatility driven by sentiment (Utami, 2021).
Amid the increased market risk, managing market risk for traded assets, especially stocks, became crucial by predicting and

estimating future volatility. This modeling process employs Autoregressive Conditional Heteroscedasticity (ARCH) and Generalized
Autoregressive Conditional Heteroscedasticity (GARCH). Given that each market has unique characteristics, performance metrics,
and sizes, selecting the best model requires meticulous specification to ensure precise estimation of stock return volatility. Greater
precision in volatility estimation reduces decision-making risks for investors. This research focuses on identifying the best-fitting
model by comparing actual and forecasted investment values using the GARCH model, as demonstrated in previous studies (Lin,
2018; Sharma et al., 2016; Virginia et al., 2018).

The distinction of this research lies in its exploration of the COVID-19 pandemic’s impact on the capital market, and the unique
characteristics of the Jakarta Composite Index (JKSE). There are many research that already focused on company stock in Indonesia
(Septiana et al., 2021; Yolanda et al., 2017; Iqbal and Ningsih, 2021) but view of them discuss about Indonesia stock market. The
novelty of this research aims to focus on the prediction of the Indonesian stock market to give an understanding of millennial and
Gen-Z investors who turned to the stock market during the pandemic. Another objective is to provide insights into effective risk
management and decision-making strategies for investors during times of heightened volatility in the financial market, particularly in
developing economies like Indonesia.

B. RESEARCH METHOD
1. Time Series Analysis

Time series analysis is a technique for analyzing a set of data from the past over a period to estimate and forecast future
occurrences. According to Chatfield and Xing (2019) there are two types of time series: discrete time series and continuous time
series. The difference between discrete and continuous time series lies in the type of observation set. Discrete time series have a
discrete set, while continuous time series have a continuous time interval. Time series is known to be denoted as {Y t}. The Y is
a variable for time series, subscript t refers to time and if t = 1, it becomes the first observation, and t = T is the last observation.
A complete observation period is defined as t = 0,±1,±2,±3, . . . , T . The observation can be measured in the terms of several
intervals, such as annually, monthly, weekly, daily, hourly, etc (Mills, 2019; Tsay, 2005).

2. Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF)
Wei (2018) explained that Yt as a stationary process has the constant mean E(Yt) = µ, the constant variance V ar(Yt) =

E(Yt − µ)2 = σ2, along with the covariance Cov(Yt, Ys) which are functions impacted by time difference (t − s). Therefore,
the covariance between Yt and Yt+k can be written as

γk = Cov(Yt, Yt+k) = E[(Yt − µ)(Yt+k − µ)] (1)

and the autocorrelation between Yt and Yt+k is

ρk =
Cov(Yt, Yt+k)√

V ar(Yt)
√
V ar(Yt+k)

=
γk
γ0

(2)

where V ar(Yt) = V ar(Yt+k) = γ0.
The partial autocorrelation function (PACF) is used to measure the correlation between Yt and Yt+k after their mutual

linear dependency on the intervening variables Yt+1, Yt+2, . . . , and Yt+k−1 has been removed. The conditional correlation is
Corr(Yt, Yt+k|Yt+1, . . . , Yt+k−1. Consider ρk denote the partial autocorrelation between Yt and Yt+k, the equation given as

ρk =
Cov[(Yt − Ŷt), (Yt+k − Ŷt+k)])√
V ar(Yt − Ŷt)

√
V ar(Yt+k − Ŷt+k)

(3)

after all the assumptions related, the equation of ρk becomes.

ρk =
γk − α1γk−1 − . . . αk−1γ1
γ0 − α1γ1 − . . . αk−1γk−1

=
ρk − α1ρk−1 − . . . αk−1ρ1
γ0 − α1ρ1 − . . . αk−1ρk−1

(4)
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3. Stationary and Non-Stationary Model
3.1. Autoregressive Model (AR)

The autoregressive model has a function to identify the linear relationship between recent values and past values (Mills,
2019). the equation of the autoregressive model, AR(p) is given by

Yt = φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p + et (5)

where.
Yt : Linear combination of the p most recent past values
et : Error at time t which is not explained by past values; Independent of Yt−1, Yt−2, Yt−3, . . ..

3.2. Moving Average Model (MA)
Moving average process is where there is a finite number of -weights are nonzero only (Cryer et al., 2008; Shumway &

Stoffer, 2017) It is also called a moving average of order q or MA(q). The equation is

Yt = et − θ1et−1 + θ2et−2 + . . .+ θqet−q (6)

where,
Yt : The weights of 1,−θ1,−θ2, . . . ,−θq to the variables et, et−1, et−2, . . . , et−q .
Yt+1 : move the weights and apply it to et+1, et, et−1, . . . , et−q+1.

3.3. Mixed Autoregressive Moving Average Model (ARMA)
Shumway and Stoffer (2017) and stated that autoregressive moving average process is where the series is partly autore-

gressive process and moving average process. The equation of ARMA (p,q) can be obtained by

Yt = φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p + et − θ1et−1 − θ2et−2 − . . .− θqet−q (7)

where Yt is the mixed autoregressive moving average of order p and q (Cryer et al., 2008).

3.4. Integrated Autoregressive Moving Average Model (ARIMA)
The dth difference Wt = 5dYt is an integrated model of the stationary ARMA process. It is also called the

ARIMA(p, d, q) process. Shumway and Stoffer (2017) explained that the differencing process generally stops at d = 1

or at most d = 2. The equation of ARIMA (p,1,q) with Wt = Yt − Yt−1 is

Wt = φ1Wt−1 + φ2Wt−2 + . . .+ φpWt−p + et − θ1et−1 − θ2et−2 − . . .− θqet−q (8)

or

Yt = (1 + φ1)Yt−1 + (φ2 − φ1)Yt−2 + . . .+ (φp − φp−1)Yt−p − φpYt−p−1 + et − θ1et−1 − θ2et−2 − . . .− θqet−q (9)

and the characteristic polynomial is

(1− φ1x− φ2x2 − . . .− φpxp)(1− x)

(Cryer et al., 2008).

4. Autoregressive Conditional Heteroscedasticity (ARCH)
The ARCH model is proposed by Engle in 1982 for modeling the changing variance of time series in the use to forecast the

conditional variances in the future. The equation of this model can be obtained as (Paolella, 2018; Tsay, 2005),

σ2
t = ω + α1r

2
t−1 + α2r

2
t−2 + . . .+ αqr

2
t−q (10)

where, ω > 0, αi ≥ 0 for i > 0, and r2t−j ; j = 1, 2, . . . are the components of ARCH.
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5. Generalized Autoregressive Conditional Heteroscedasticity (GARCH)
In the term of increasing the accuracy for forecasting future volatilities, not only the most recent squared returns but all past

squared returns with lesser weight need to be included. It becomes the combined model called GARCH (p,q) model where p is
the GARCH order and q is the ARCH order (Paolella, 2018; Sharma et al., 2016):

σ2
t = ω +

q∑
i=0

αir
2
t−i +

p∑
i=0

βjσ
2
t−j (11)

6. Best Model Selection
The best model can be obtained by the method that is proposed by Akaikes Information Criteria. The method selects the

model by minimizing:

AIC = −2 log(maximum likelihood) + 2k

Where k = p+ q+1 if the model is an intercept or a constant term and vice versa for k = p+ q (Chatfield and Xing, 2019;
Grønneberg and Hjort, 2014).

7. Forecasting
The forecast process refers to ARMA(P,Q) − GARCH(p, q) model (Mills, 2019; Paolella, 2018). The equation for

forecasting YT+h as the mean equation of ARMA(P,Q):

YT+h = φ1YT+h−1 + . . .+ φp+dYT+h+p−d + eT+h − θ1eT+h−1 − . . .− θqeT+h−q (12)

and the equation to forecast the error variances of GARCH(p, q):

V (et,h) = σ2
T+h + ψ2

1σ
2
T+h−1 + . . .+ ψ2

h−1σ
2
T+1 (13)

where,
σ2
T+h = ω + α1r

2
T+h−1 + . . .+ αpr

2
T+h−p + β1σ

2
T+h−1 + . . .+ βqσ

2
T+h−q (14)

8. Data Source
The data obtained is secondary data taken from the official Yahoo Finance website (https://finance.yahoo.com). The data

used is the adjustment close price of Jakarta Composite Index (JKSE) data or also known as the Indeks Harga Saham Gabungan
(IHSG) in the period range of January 2020 to December 2022. The data are divided into training data and test data. The training
data used for building the model, the test data is used to compare the actual data with the forecast data from the model obtained.

Figure 1. Data Adjustment Closed Price JKSE 2020-2022 (Source: Yahoo Finance)
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From the historical data, the price index of JKSE drop significantly in the first quarter of 2022 and continue to increase but
also experienced decrease during from April 2020 until December 2022.

C. RESULT AND DISCUSSION
1. Stationary Test

Stationary test is a test to see check whether the time series has trend or seasonal component. Time series with stationary
series is easier for having effective and prices prediction. In stationary test process, the data is being tested using Augmented
Dickey-Fuller (ADF) test. ADF test shown that for every lag the p-value> 0.01, which means that we accept the null Hypothesis,
H0, that there is non-stationary in the testing data. Ljung-Box test statistics is 11766, and the p-value is < 0.01 so there is no
evidence of non-zero autocorrelation in the sample data at lags 1-20. This fact also strengthen with the correlation diagram of
Autocorrelation function (ACF) and Partial Autocorrelation function (PACF). From the figure 2, for every lag in ACF shows that
all value shown are significantly far from zero and the only pattern is perhaps a linear decrease with increasing lag.

Figure 2. ACF and PACF of Testing Data

To obtain stationary conditions, the first differencing of the training data is used. The first differencing gives a p-value
≤ 0.01, hence rejecting the null hypothesis, H0, which means that the data is now stationer. In Figure 3, the correlation diagram
has changed, especially in ACF, compared with the ACF in Figure 2. The output of coefficient ACF is close to 0 at lag 3 and for
other lags, the values are relatively small. The cut-off happened in lag 3 while in PACF the cut-off happened in lag 3. It indicates
that in the ARIMA model with AR(p) and MA(q) with first differencing the estimation model of ARIMA will be tested from
ARIMA (0,1,0) up to ARIMA (3,1). The best model will be selected from the smallest AIC based on the maximum likelihood
formula.

Figure 3. ACF and PACF of Testing Data
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From several estimated model the best ARIMA model for this data ia ARIMA (2,1,2) with the smallest AIC=7418.37 among
the other ARIMA(p,d,q) (see Table.1). ARIMA (2,1,2) has coeeficient AR(1) is -1.4047 , AR(2) is -0.8820, MA(1) is 1.4258,
and MA(2) is 0.7851, Hence the Time series model become

Wt = −1.4047Wt−1 + (−0.8820)Wt−2 + et − 1.4258et−1 − 0.7851et−2

Table 1. Sample of AIC from Estimated Model
ARIMA (p,d,q) AIC

0,1,0 7425.02
0,1,1 7426.9
1,1,2 7425.82
2,1,2 7418.37
3,1,2 7420.71
3,1,3 7420.64

Table 1 shows several examples of ARIMA model estimation simulations with various values with AIC values produced in
ARIMA(p, d, q). The best ARIMA model for this data ia ARIMA(2, 1, 2) with the smallest AIC=7418.37 among the other
ARIMA(p, d, q).

2. ARCH Effect
To continue the process of using the GARCH model, the heteroscedasticity test is performed. GARCH models are applied

when the error term’s variance fluctuates, indicating heteroskedasticity. This term refers to the inconsistent variation pattern of
an error term or variable within a statistical model. In essence, when heteroskedasticity is present, the observations deviate from
a linear pattern. The heteroscedasticity test used is the Lagrange-Multiplier Test (LM test). If the residual (error) of the data
shows heteroscedasticity then the process continues to GARCH. The null hypothesis H0 is there is no heteroscedasticity in the
residual, while the alternative Ha, there is heteroscedasticity in the residual.

The residual of the data is the normal distribution with the residual plot given in Figure 4. The plot in Figure 4. Shows that
there are some outliers from the residual which indicates there is heteroscedasticity. The p-value test also has a value < 0.05,
which means the H0 rejected, so there is heteroscedasticity in the residual. Further, the models have an ARCH effect. Then the
estimation process can be estimated using the ARCH/GARCH Model.

Figure 4. Residual Plot

3. GARCH Modeling
The selection of the best GARCH(p, q) model is determined using the ARCH-LM p-value, the smallest AIC value,

and the significance of the parameter. From Table 2, we can see that the ARIMA(2, 1, 2) − GARCH(1, 2) has the
smalles AIC value with 11.031 while the maximum AIC appeared in ARIMA(2, 1, 2) − GARCH(2, 2) with the value is
11.057. Hence the best model of the ARIMA-GARCH model is ARIMA(2, 1, 2) − GARCH(1, 2) with the parameter
ω = 514.019481, α1 = 0.148498, α2 = 0.009139, β1 = 0.715101. Hence from equation (11), the GARCH equation can
be obtained as σ2

t = 514.019481 + 0.14849σ2
t−1 + 0.009139σ2

t−2 + 0.715101r2t−1.

Table 2. Sample of AIC from Estimated Model
ARIMA (2,1,2)-GARCH(p,q) AIC No Serial Correlation
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ARIMA (2,1,2)-GARCH(1,1) 11.051 Yes
ARIMA (2,1,2)-GARCH(1,2) 11.031 Yes
ARIMA (2,1,2)-GARCH(2,1) 11.05 Yes
ARIMA (2,1,2)-GARCH(2,2) 11.057 Yes

Moreover the ARCH-LM test for lag [4], lag [6], and lag [8] shows the p-value 0.8857, 0.9533, and 0.9566 respectively. As
the p-value > 0.05 then the models fulfill the assumption of homogeneity of variance or the variance is equal.

4. Forecasting
Forecasting of the time series is based on the ARIMA (2,1,2)-GARCH (1,2) model. The result of forecasting using the

model has been determined in Table 3. which shows the exact forecast series 74 days ahead, from September 20, 2022, to
December 30, 2022. Then we compare the result of the actual and the forecast data to obtain the Mean Absolute Percentage
Error (MAPE). The MAPE score is 2% which is relatively small. It means that ARIMA (2,1,2)-GARCH (1,2) is good enough
for forecasting the Jakarta Composite Index.

Table 3. Forecast and Actual Data
Day Actual GARCH Forecas

1 7196.951 6913.78
2 7188.314 6911.284
3 7218.906 6951.955
4 7178.583 6974.915
5 7127.503 7101.185
6 7112.449 6969.412
...

...
...

72 6850.52 7189.106
73 6860.077 7117.862
74 6850.619 7140.129

In comparison, Figure 5 shows that the graph of actual data and the forecast data using ARIMA (2,1,2)-GARCH (1,2) shows
that the forecast data can predict the actual data.

Figure 5. Comparison of Actual and ARIMA GARCH Forecast

Seen in Figure 5, the research results show that the difference between the graph of actual data (blue curve) and forecast
data (yellow dotted curve) is very striking. this is in line with previous research (Aklimawati and Wahyudi, 2013; Septiana et al.,
2021). So the meaning of this research is good enough to predict the Composite Stock Price Index.
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D. CONCLUSION AND SUGGESTION
The conclusion of this study highlights that the ARIMA (2,1,2) model, in conjunction with its variance component in

GARCH(1,2) emerges as the optimal choice for modeling Jakarta Composite Index (JKSE) data during the pandemic era. The
MAPE score is 2% which is relatively small. It means that ARIMA (2,1,2)-GARCH (1,2) is good enough for forecasting the Jakarta
Composite Index. This selection was based on the strict criterion of minimizing the AIC value, distinguishing it from other models.
This innovation holds considerable value for researchers and investors aiming to navigate volatile markets. The implications of this
research impact financial decision-making. The identified model and its forecasts offer valuable insights for investors and financial
professionals, helping them make more informed investment choices during times of increased uncertainty, such as a pandemic.
However, it’s crucial to acknowledge the study’s limitations. Firstly, the data used in this research only goes up to December 2022,
and the ongoing pandemic may have introduced dynamic changes in the financial landscape. Additionally, no model is perfect, and
the selected ARIMA-GARCH model has its potential shortcomings, necessitating careful risk management.

In conclusion, this study’s innovative modeling approach, its implications for financial decision-making, and its acknowledg-
ment of limitations highlight its importance. Future research could extend the dataset, explore alternative modeling techniques like
EGARCH, GJR-GARCH, TGARCH, IGARCH, APARCH, and CGARCH, and conduct cross-country comparisons to evaluate the
robustness of these findings in different developing economies, such as Malaysia, Thailand, and Vietnam. These efforts can col-
lectively enhance our understanding of financial market behavior during crises and contribute to more effective risk management
strategies.
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