IMPLEMENTASI ALGORITMA PERCEPTRON UNTUK KLASIFIKASI PENYAKIT DIABETES
Abstract
Diabetes adalah penyakit yang berlangsung lama atau kronis serta ditandai dengan kadar gula (glukosa) darah yang tinggi atau di atas nilai normal. Jika diabetes tidak dikontrol dengan baik, Pengujian performa berbagai metode pada sebuah dataset merupakan salah satu cara dalam penetapan metode klasifikasi yang tepat, masalah yang diangkat pada penelitian ini adalah bagaimana mengukur performa metode klasifikasi dalam mengelola dataset penderita diabetes. Metode yang digunakan yaitu algoritma perceptron, dengan dataset pima indian diabetes dengan data uji sebesar 80% dan data latih sebesar 20% dari keseluruhan data telah mendapatkan hasil akurasi sebesar 75%, presisis 74% dan recall 76%, jadi model yang dirancang cukup baik dalam mengklasifikasi penyakit diabetes.
References
A. Ridwan, “Penerapan Algoritma Naïve Bayes Untuk Klasifikasi Penyakit Diabetes Mellitus,” J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), vol. 4, no. 1, pp. 15–21, 2020, doi: 10.47970/siskom-kb.v4i1.169.
F. M. Hana, “Klasifikasi Penderita Penyakit Diabetes Menggunakan Algoritma Decision Tree C4.5,” J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), vol. 4, no. 1, pp. 32–39, 2020, doi: 10.47970/siskom-kb.v4i1.173.
M. Yanto, “Penerapan Jaringan Syaraf Tiruan Dengan Algoritma Perceptron Pada Pola Penentuan Nilai Status Kelulusan Sidang Skripsi,” J. Teknoif, vol. 5, no. 2, pp. 79–87, 2017, doi: 10.21063/jtif.2017.v5.2.79-87.
L. Setiyani, M. Wahidin, D. Awaludin, and S. Purwani, “Analisis Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Data Mining Naïve Bayes : Systematic Review,” Fakt. Exacta, vol. 13, no. 1, p. 35, 2020, doi: 10.30998/faktorexacta.v13i1.5548.
L. Afriyanti, “Rancang Bangun Tool Untuk Jaringan Syaraf Tiruan ( Jst ) Model Perceptron,” vol. 2010, no.Snati, pp. 85–90, 2010.
H. Hairani, K. E. Saputro, and S. Fadli, “K-means-SMOTE for handling class imbalance in the classification of diabetes with C4.5, SVM, and naive Bayes,” J. Teknol. dan Sist. Komput., vol. 8, no. 2, pp. 89–93, 2020, doi: 10.14710/jtsiskom.8.2.2020.89-93.