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ABSTRACT

The thesis reports housed in the campus repository have yet to be analyzed to reveal valuable knowl-
edge patterns. Analyzing trends in thesis research topics can facilitate the selection of research topics,
aid in mapping research areas, and identify underexplored topics.Therefore, this research aims to
model and classify thesis topics using Latent Dirichlet Allocation (LDA) and the Nave Bayes and
Support Vector Machine (SVM) methods. This study employs the LDA method for thesis topic mod-
eling, while SVM and Nave Bayes are used for classifying these topics. The research results show that
LDA successfully modeled five of the most popular thesis topics, namely two related to computer net-
works, two on software engineering, and one on multimedia. For thesis topic classification, the SVM
method demonstrated higher accuracy than Nave Bayes, reaching 92.80% after the data was balanced
using Synthetic Minority Oversampling Technique (SMOTE). The implication of this study is that the
topic modeling approach using LDA is able to identify dominant thesis topics. In addition, the SVM
classification results obtained better accuracy than Nave Bayes in the thesis topic classification task.
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1. INTRODUCTION
A final project or thesis is one of the requirements that students must fulfill to obtain a bachelor’s degree in Indonesia. Com-

pleted thesis reports are then uploaded to the campus repository as archives [1]. However, the problem is that these thesis reports
stored in the repository have not been utilized or further analyzed [2] to generate valuable knowledge patterns. This data could be
used to analyze and categorize the topics discussed in the theses. By analyzing trends in student research topics, deeper insights into
previously completed thesis topics can be gained [3]. This makes it easier for students to choose future research topics and allows for
a broader mapping of research interests. Grouping thesis topics can help identify underexplored research areas, providing direction
for more focused and targeted research development in the future [4].

Thesis topic modeling has been conducted in several previous studies using various methods [5]. For example, one study
discussed topic modeling for automatically classifying unstructured scientific text documents, comparing the performance of Latent
Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA). The results showed that LDA was more effective than LSA in
grouping words into topics based on the Coherence scale, making it a better method for classifying e-book documents. Another study
[6] examined text mining algorithms to recommend suitable thesis topics using Neural Networks, aiming to help students understand
topic correlations, identify trending topics, and avoid repetitive research topics. Research [7] used the Naı̈ve Bayes method to classify
thesis topics based on abstracts in computer networks, multimedia, and software engineering, achieving an accuracy rate of 88.69%.

A study [8] proposed a system for automating the classification of research articles using aTerm Frequency - Inverse Document
Frequency (TF-IDF) and LDA approach. The K-means algorithm was applied to group all articles into research clusters with similar
subjects. Research [7] explored various clustering algorithms that could be applied to analyze thesis topic data, such as K-means,
hierarchical clustering, and spectral clustering. The findings indicated that the selection of a clustering algorithm should be tailored
to the specific characteristics and objectives of the data being analyzed. Research [9] discussed using the Support Vector Machine
(SVM) method to recommend thesis topics to students by clustering selected courses, with a test accuracy result of 80%.

There is a limitation in previous research that has not been addressed; namely, no study has combined thesis topic modeling
with LDA and topic classification using SVM and Nave Bayes simultaneously. Therefore, this research differs from previous studies
by applying thesis topic modeling using LDA and simultaneously classifying them with SVM and Nave Bayes methods. This study
aims to model and classify thesis topics based on LDA with a combination of Nave Bayes and SVM methods. It is hoped that thesis
topic modeling with LDA can contribute to making it easier for students to choose research topics, assist in mapping topics, and
identify topics that have not been fully explored.

2. RESEARCH METHOD
The research flow is illustrated in Figure 1, where the stages include data collection, text preprocessing, term weighting, data

balancing with Synthetic Minority Oversampling Technique (SMOTE), data splitting, LDA modeling, method implementation, and
model evaluation with accuracy. Each stage begins with data collection, followed by text preprocessing to clean and prepare the
data. Then, term weighting is performed to assess the importance of words in the text, followed by data balancing using SMOTE
to address class imbalance. The data is split into training and testing sets before moving on to LDA modeling for topic extraction.
The next step is implementing the planned method, and the research concludes with model performance evaluation using accuracy
metrics to assess the effectiveness of the resulting model. The first stage involves collecting thesis data from the Universitas Bumigora
campus repository, including titles and concentrations. The collected data consists of 233 entries from 2020 and 2021, with 103 in
the Networking concentration, 79 in Software Engineering, and 51 in Multimedia. The second stage is text preprocessing, aimed at
improving text quality, which can impact the performance of classification methods. This study applies several text preprocessing
techniques, including case folding, tokenization, stopword removal, and stemming [10], as illustrated in Figure 2.

Case folding aims to convert all letters in the text to lowercase. Tokenization is intended to divide the text into smaller units
called token. Stopword removal serves to eliminate common words that frequently appear in the text, such as and, or, from, which
usually do not provide much contextual information. Removing stopwords helps to focus on more significant words for analysis.
Stemming aims to return words to their base forms.

The third step is term weighting using TF-IDF, which aims to measure the influence of a term within a document relative to
the corpus. TF-IDF combines two values: TF and IDF. TF measures how often a word appears in a document. The term’s frequency
influences the TF value; the more frequently a term appears, the higher its TF value. In contrast, IDF measures how rarely a word
appears across all documents in the corpus. Terms frequently appearing in documents have low IDF values, while words that appear
less frequently have high IDF values. By multiplying TF with IDF, TF-IDF emphasizes words common in a specific document but
rare in others, making them more significant for text analysis. The TF-IDF weighting process is illustrated in Figure 3. Due to data
imbalance, the TF-IDF weights are followed by data balancing using SMOTE. The SMOTE balancing process involves (1) Randomly
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selecting samples from the minority class, (2) Creating minority samples based on nearest neighbors using Euclidean distance, (3)
Generating new samples between selected minority samples based on nearest neighbors [11].

Figure 1. Research Flow

Figure 2. Text Preprocessing Flow
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Figure 3. The Flow of TF-IDF Weighting Calculation [12]

The fifth step involves dividing the data and modeling topics using LDA. In this stage, the data is split into training and testing
sets. The classification method uses the training data to learn patterns, while the testing data assesses how well the model understands
these patterns. Data splitting uses 10-fold cross-validation. Next, topic modeling is performed using the LDA method. LDA is a
generative method for topic modeling where each document is considered a mixture of various topics, and each topic is a distribution
of specific words. The core of LDA is that each document in the text collection is viewed as a combination of multiple topics, with
each word associated with one of these topics. LDA aims to reveal the hidden topic structure within a collection of documents and
associate each word in a document with one of the identified topics.

The sixth step is implementing the SVM and Naı̈ve Bayes methods for classifying thesis topics. The SVM method maximizes
the margin in creating class decision boundaries [13]. The Naı̈ve Bayes method is a probability-based approach for classifying into
specific categories, assuming independence between features [14, 15]. The next step is evaluating the performance of SVM and Naı̈ve
Bayes methods based on accuracy using Equation (1).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

3. RESULT AND ANALYSIS
This section explains the results of each stage, as shown in Figure 1. The data used in this study consists of 233 thesis topics

from the Computer Science program at Universitas Bumigora, as shown in Table 1. After the data was collected, text preprocessing
was performed to improve data quality and classification method performance. The results of this text preprocessing are presented in
Table 2. Table 2 contains the processed data, which was then weighted using the TF-IDF method. TF-IDF produces a score indicating
the importance of a word in a specific document based on the overall context of the document collection. The higher the TF-IDF
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value, the stronger the word’s association with that document. The TF-IDF weighting results for the data used can be seen in Table
3. TF-IDF weights assess the importance of a word in a document. Words with high TF-IDF values are considered more important
in a particular document compared to other words that have lower values [16]. The data weighted by TF-IDF was balanced using the
SMOTE method to ensure equal data. The results of this data balancing can be seen in Figure 4.

Table 1. Thesis Topic Dataset

No Text Sentiment
1 IMPLEMENTASI ALGORITMA FREQUENT PATTERN GROWTH UNTUK

REKOMENDASI ITEM PAKET MENU DI ANGKRINGAN WARUNG TANJUNG
BIAS

RPL

2 ANALISA PENERAPAN VXLAN TUNNELING MENGGUNAKAN OPEN
VSWITCH UNTUK INTERKONEKSI JARINGAN BEDA LOKASI

JARINGAN

. .
232 PENERAPAN AUGMENTED REALITY SEBAGAI MEDIA PENGENALAN PERHI-

ASAN BERBASIS ANDROID
MULTIMEDIA

233 APLIKASI KOMIK DIGITAL INTERAKTIF CERITA DEWI ANJANI BERBASIS AN-
DROID

MULTIMEDIA

Table 2. Preprocessing Results of Thesis Topic Dataset

No Stemming Sentiment
1 [’implementasi’, ’algoritma’, ’frequent’, ’pattern’, ’growth’, ’rekomendasi’, ’item’,

’paket’, ’menu’, ’angkring’, ’warung’, ’tanjung’, ’bias’]
RPL

2 [’analisa’, ’terap’, ’vxlan’, ’tunneling’, ’open’, ’vswitch’, ’interkoneksi’, ’jaring’, ’beda’,
’lokasi’]

JARINGAN

. .
232 [’terap’, ’augmented’, ’reality’, ’media’, ’kenal’, ’hias’, ’bas’, ’android’] MULTIMEDIA
233 [’aplikasi’, ’komik’, ’digital’, ’interaktif’, ’cerita’, ’dewi’, ’anjani’, ’bas’, ’android’] MULTIMEDIA

Table 3. TF-IDF Weighting Result

Doc Id Term TF DF IDF TF-IDF
1 Warung 0,07692 1 2,36736 0,1821
1 Algoritma 0,07692 26 0,95238 0,07326
1 Frequent 0,07692 2 2,06633 0,15895
1 Paket 0,07692 1 2,36736 0,1821
1 Tanjung 0,07692 2 2,06633 0,15895
1 Growth 0,07692 1 2,36736 0,1821
1 Item 0,07692 1 2,36736 0,1821
1 Pattern 0,07692 1 2,36736 0,1821
1 Angkring 0,07692 1 2,36736 0,1821
1 Implementasi 0,07692 31 0,87599 0,06738
1 Bias 0,07692 1 2,36736 0,1821
1 Menu 0,07692 1 2,36736 0,1821
1 Rekomendasi 0,07692 2 2,06633 0,15895

...
233 Cerita 0,125 1 2,36736 0,29592
233 Interaktif 0,125 3 1,89023 0,23628
233 Anjani 0,125 1 2,36736 0,29592
233 Digital 0,125 5 1,66839 0,20855
233 Komik 0,125 1 2,36736 0,29592
233 Aplikasi 0,125 33 0,84884 0,10611
233 Android 0,125 16 1,16324 0,1454
233 Dewi 0,125 1 2,36736 0,29592
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Figure 4. Data Balancing Results with SMOTE

In Figure 5, the Naı̈ve Bayes method without SMOTE predicted 98 instances for the Jaringan class, 37 for the Jaringan class,
and 63 for the RPL class. In Figure 6, the Naı̈ve Bayes method without SMOTE predicted 98 instances for the Jaringan class, 37
instances for the Network class, and 63 instances for the RPL class. In Figure 7, the Naı̈ve Bayes method with SMOTE predicted
88 instances for the Jaringan class, 102 for the Jaringan class, and 89 for the RPL class. In Figure 8, the Naı̈ve Bayes method with
SMOTE predicted 100 instances for the Jaringan class, 99 for the Jaringan class, and 88 for the RPL class. The SMOTE method
with Naı̈ve Bayes achieved an accuracy of 85.4% for the Jaringan class, 99% for the Multimedia class, and 86.4% for the RPL class.
The SMOTE method with SVM achieved an accuracy of 97.1% for the Jaringan class, 99% for the Multimedia class, and 86.4% for
the RPL class.

Figure 5. Confusion Matrix of Naı̈ve Bayes Method Figure 6. Confusion Matrix of SVM Method
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Figure 7. Confusion Matrix of SMOTE and Naive Bayes Figure 8. Confusion Matrix of SMOTE and SVM Method

In Figure 9, it is shown that Naı̈ve Bayes without SMOTE achieved an accuracy of 84.90%, while with SMOTE, the accuracy
increased to 90.20%. The SVM method without SMOTE produced an accuracy of 81.90%, but with SMOTE, the accuracy rose to
92.80%. The findings of this study indicate an increase in accuracy for both methods after the data was balanced using SMOTE, with
Naı̈ve Bayes improving by 5.3% and SVM by 10.9%. This is consistent with studies [17, 18] which shows that using SMOTE can
enhance the accuracy of classification methods. On average, this study the SVM method is superior to Naive Bayes in classifying
thesis topics, because the SVM method can handle more complex (non-linear) relationships between features and can also work on
high-dimensional data [19].

Figure 9. Performance Comparison of SVM and Naı̈ve Bayes Methods
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3.1. LDA Modeling
The findings of this study indicate that thesis topic modeling using LDA revealed five main topics, which were extracted based

on the highest coherence values (see Figure 10). According to Table 4, Topic 1 is related to network security analysis, Topic 2 to
Proxmox-based load balancing, Topic 3 to augmented reality, Topic 4 to decision support systems, and Topic 5 to applying algorithms
or methods. Therefore, it can be concluded that the most popular thesis topics among students in 2020 and 2021 include two topics
on computer networks, two on software engineering, and one on multimedia.

Figure 10. Coherence Score Chart

Table 4. Thesis Topic Modeling Results with LDA

Topic Modeling Results
1 Network security analysis
2 Proxmox-based load balancing analysis
3 Augmented reality based on android
4 Decision support system
5 Application of algorithms or methods to web-based applications

4. CONCLUSION
The conclusion of this study is that topic modeling using LDA successfully identified the five most dominant thesis topics.

These topics include network security analysis, Proxmox-based load balancing, augmented reality, decision support systems, and
the application of algorithms or methods. In addition, SVM proved to be more accurate in classifying thesis topics compared to
Nave Bayes, achieving an accuracy of 92.80% after using the SMOTE technique. This approach not only helps in revealing valuable
knowledge patterns from thesis reports but also facilitates the selection and mapping of research topics that are still under-explored.
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