Automatic Control and Monitoring for Hydroponic Lettuce with Blynk and ESP32
DOI:
https://doi.org/10.30812/corisindo.v1.5576Keywords:
Blynk, ESP32, Fuzzy Sugeno, Hydroponic Lettuce, NFTAbstract
Selada (Lactuca sativa L.) merupakan tanaman hortikultura bernilai gizi tinggi dengan permintaan yang terus meningkat seiring kesadaran pola makan sehat. Hidroponik Nutrient Film Technique (NFT) menjadi solusi efisien dalam pemanfaatan lahan dan nutrisi, namun sering terkendala kompleksitas teknis. Untuk menjawab hal ini, penelitian mengembangkan sistem smart farming berbasis ESP32 yang mengatur pH dan nutrisi secara otomatis. Berbeda dari penelitian sebelumnya, sistem ini memadukan logika fuzzy Sugeno dengan kontrol pH dan pupuk yang terhubung ke aplikasi Blynk untuk pemantauan real-time. Logika fuzzy Sugeno digunakan untuk mengontrol pompa pH, sementara distribusi pupuk diatur berdasarkan sensor PPM. Integrasi dengan Blynk memungkinkan notifikasi dan pengendalian jarak jauh sehingga mengurangi intervensi manual. Hasil pengujian menunjukkan sistem mampu memberikan notifikasi akurat saat pH < 5,5 dan PPM < 560, serta menonaktifkan notifikasi ketika kondisi kembali normal. Selain itu, pompa pH Up, pompa A, pompa B, dan pompa Mix berfungsi sesuai skenario yang diberikan, menandakan sistem berjalan responsif dan andal dalam mendukung budidaya selada hidroponik NFT.
References
[1] J. Student, T. Weitz, T. Blewett, S. Yaron, and M. Melotto, “Lettuce Genotype-Dependent Effects of Temperature on Escherichia coli O157:H7 Persistence and Plant Head Growth,” J Food Prot, vol. 87, no. 9, Sep. 2024, doi: 10.1016/j.jfp.2024.100334.
[2] A. Chatterjee et al., “Demystifying the integration of hydroponics cultivation system reinforcing bioeconomy and sustainable agricultural growth,” Sci Hortic, vol. 341, Feb. 2025, doi: 10.1016/j.scienta.2025.113973.
[3] K. Vought et al., “Dynamics of micro and macronutrients in a hydroponic nutrient film technique system under lettuce cultivation,” Heliyon, vol. 10, no. 11, Jun. 2024, doi: 10.1016/j.heliyon.2024.e32316.
[4] R. Mukhopadhyay, B. Sarkar, H. S. Jat, P. C. Sharma, and N. S. Bolan, “Soil salinity under climate change: Challenges for sustainable agriculture and food security,” Feb. 15, 2021, Academic Press. doi: 10.1016/j.jenvman.2020.111736.
[5] S. Karimzadeh, A. Daccache, M. C. Rulli, and M. S. Ahamed, “Global water-nutrient-salinity-energy nexus in lettuce production: From open-field irrigation to closed-loop hydroponics in greenhouses,” J Agric Food Res, vol. 21, Jun. 2025, doi: 10.1016/j.jafr.2025.101935.
[6] T. Yang, U. Samarakoon, and J. Altland, “Growth, phytochemical concentration, nutrient uptake, and water consumption of butterhead lettuce in response to hydroponic system design and growing season,” Sci Hortic, vol. 332, Jun. 2024, doi: 10.1016/j.scienta.2024.113201.
[7] R. S. Velazquez-Gonzalez, A. L. Garcia-Garcia, E. Ventura-Zapata, J. D. O. Barceinas-Sanchez, and J. C. Sosa-Savedra, “A Review on Hydroponics and the Technologies Associated for Medium-and Small-Scale Operations,” May 01, 2022, MDPI. doi: 10.3390/agriculture12050646.
[8] V. Vincentdo and N. Surantha, “Nutrient Film Technique-Based Hydroponic Monitoring and Controlling System Using ANFIS,” Electronics (Switzerland), vol. 12, no. 6, Mar. 2023, doi: 10.3390/electronics12061446.
[9] G. Idoje, T. Dagiuklas, and M. Iqbal, “Survey for smart farming technologies: Challenges and issues,” Computers and Electrical Engineering, vol. 92, Jun. 2021, doi: 10.1016/j.compeleceng.2021.107104.
[10] A. B. Kaswar, R. D. Mahande, and J. D. Malago, “A NEW MODEL FOR HYDROPONIC LETTUCE NUTRITION ADAPTIVE CONTROL SYSTEM BASED ON FUZZY LOGIC SUGENO METHOD USING ESP32,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 2, pp. 391–400, Mar. 2023, doi: 10.52436/1.jutif.2023.4.2.626.
[11] A. D. Wibowo, N. Kholis, F. Baskoro, and E. Endryansyah, “Rancang Bangun Sistem Kontrol dan Monitoring Dengan Pendeteksi Hujan Pada Instalasi Hidroponik NFT Tanpa Atap Berbasis Telegram BOT,” JURNAL TEKNIK ELEKTRO, vol. 11, no. 3, pp. 471–480, Oct. 2022, doi: 10.26740/jte.v11n3.p471-480.
[12] T. P. Fiqar, F. Fitriani, and R. K. Abdullah, “Implementasi Sistem Monitoring Tanaman Hidroponik Menggunakan Metode Fuzzy Sugeno,” JTIM : Jurnal Teknologi Informasi dan Multimedia, vol. 5, no. 2, pp. 109–121, Aug. 2023, doi: 10.35746/jtim.v5i2.372.
[13] A. Wu et al., “Experimental Study on the Hydroponics of Wetland Plants for the Treatment of Acid Mine Drainage,” Sustainability (Switzerland), vol. 14, no. 4, Feb. 2022, doi: 10.3390/su14042148.
[14] F. Modu, A. Adam, F. Aliyu, A. Mabu, and M. Musa, “A survey of smart hydroponic systems,” Advances in Science, Technology and Engineering Systems, vol. 5, no. 1, pp. 233–248, 2020, doi: 10.25046/aj050130.
[15] N. B. N. Nyakundi, S. M. Reynolds, and H. Reza, “Scenario-Based Approach to Systematically Derive Test Cases for Systems,” in 2023 IEEE International Conference on Electro Information Technology (eIT), IEEE, May 2023, pp. 051–058. doi: 10.1109/eIT57321.2023.10187246.
[16] G. Kudirka, A. Viršilė, R. Sutulienė, K. Laužikė, and G. Samuolienė, “Precise Management of Hydroponic Nutrient Solution pH: The Effects of Minor pH Changes and MES Buffer Molarity on Lettuce Physiological Properties,” Horticulturae, vol. 9, no. 7, Jul. 2023, doi: 10.3390/horticulturae9070837.
[17] B. A. Rafi, M. Sarosa, and A. D. W. Sumari, “Implementation of an IoT-Based High Efficiency and Low Maintenance Lettuce Hydroponic System,” in 2024 International Conference on Electrical and Information Technology (IEIT), IEEE, Sep. 2024, pp. 14–18. doi: 10.1109/IEIT64341.2024.10763247.