Analisis Sentimen Dampak Putusan MK Batas Usia Minimum Capres-Cawapres dengan SVM, Naïve Bayes, dan KNN

Authors

  • Aldi Lukmana Universitas Bumigora, Mataram, Indonesia
  • Galih Hendro Martono Universitas Bumigora, Mataram, Indonesia
  • Neny Sulistianingsih Universitas Bumigora, Mataram, Indonesia

DOI:

https://doi.org/10.30812/corisindo.v1.5523

Keywords:

Analisis Sentimen, Mahkamah Konstitusi, Support Vector Machine, Naïve Bayes, K-Nearest Neighbors

Abstract

Mahkamah Konstitusi (MK) berperan penting dalam menegakkan konstitusi, termasuk 
menetapkan batas usia minimum pencalonan Presiden dan Wakil Presiden. Putusan ini memicu beragam 
reaksi di media sosial, mulai dari dukungan hingga penolakan yang dinilai politis. Penelitian ini bertujuan 
menganalisis sentimen publik terhadap putusan tersebut menggunakan Support Vector Machine (SVM), 
Naïve Bayes (NB), dan K-Nearest Neighbors (KNN), serta membandingkan kinerjanya berdasarkan 
akurasi, presisi, recall, dan F1-score. Penelitian dilakukan melalui enam tahap: (1) Business 
Understanding – menentukan kebutuhan, tujuan, dan pengumpulan data; (2) Data Understanding – 
mengumpulkan, mendeskripsikan, dan mengevaluasi kualitas data; (3) Data Preparation – membersihkan, 
memilih, dan mentransformasi data; (4) Modelling – menerapkan algoritma SVM, NB, dan KNN; (5) 
Evaluation – mengukur kinerja model menggunakan confusion matrix; serta (6) Deployment – menyusun 
laporan dan dokumentasi hasil analisis. Data diambil dari media sosial X dan YouTube, diolah 
menggunakan teknik text mining dan machine learning. Hasil menunjukkan SVM dan KNN memiliki 
akurasi tertinggi, masing-masing 89,5%, sedangkan NB mencapai 88,5%, sehingga SVM dan KNN dinilai 
lebih efektif dalam menganalisis sentimen publik terhadap putusan MK.

References

[1] Z. Setiawan, “Peran Mahkamah Konstitusi dalam Menjaga Stabilitas Hukum di Indonesia,” vol.

16, no. 3, hal. 19–25, 2024.

[2] H. Inarni, Tinjauan Hukum Islamterhadap Putusan Mahkamah Konstitusi Nomor 90/Puu-Xxi Tentang Batas Usia Calon Presiden Dan Wakil Presiden, no. 3. 2021.

[3] S. Khairunnisa, A. Adiwijaya, dan S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” J. Media Inform. Budidarma, vol. 5, no. 2, hal. 406, 2021, doi: 10.30865/mib.v5i2.2835.

[4] M. N. Muttaqin dan I. Kharisudin, “Analisis Sentimen Pada Ulasan Aplikasi Gojek Menggunakan Metode Support Vector Machine dan K Nearest Neighbor,” UNNES J. Math., vol. 10, no. 2, hal. 22–27, 2021, [Daring]. Tersedia pada: http://journal.unnes.ac.id/sju/index.php/ujm

[5] M. A. Hasanah, S. Soim, dan A. S. Handayani, “Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir,” vol. 5, no. 2, 2021.

[6] Y. A. Singgalen, “Penerapan Metode CRISP-DM dalam Klasifikasi Data Ulasan Pengunjung Destinasi Danau Toba Menggunakan Algoritma Naïve Bayes Classifier (NBC) dan Decision Tree (DT),” J. Media Inform. Budidarma, vol. 7, no. 3, hal. 1551, 2023, doi: 10.30865/mib.v7i3.6461.

[7] P. Edastama, A. S. Bist, dan A. Prambudi, “Implementation Of Data Mining On Glasses Sales Using The Apriori Algorithm,” Int. J. Cyber IT Serv. Manag., vol. 1, no. 2, hal. 159–172, 2021, doi: 10.34306/ijcitsm.v1i2.46.

[8] A. Sukarno Hatta, “Clustering Pada Data Sentimen Penggunaan Transportasi Online Menggunakan Algoritma Spectral Clustering,” e-Proceeding Eng., vol. 8, no. 6, hal. 11945, 2021.

[9] M. Soleimani, A. Intezari, dan D. J. Pauleen, “Mitigating cognitive biases in developing ai-assisted recruitment systems: A knowledge-sharing approach,” Int. J. Knowl. Manag., vol. 18, no. 1, hal. 1–18, 2022, doi: 10.4018/IJKM.290022.

[10] B. M. Iqbal, K. M. Lhaksmana, dan E. B. Setiawan, “2024 Presidential Election Sentiment Analysis in News Media Using Support Vector Machine,” J. Comput. Syst. Informatics, vol. 4, no. 2, hal. 397–404, 2023, doi: 10.47065/josyc.v4i2.3051.

[11] H. Yun, “Prediction model of algal blooms using logistic regression and confusion matrix,” Int. J. Electr. Comput. Eng., vol. 11, no. 3, hal. 2407–2413, 2021, doi: 10.11591/ijece.v11i3.pp2407-

2413.

[12] S. Kumar, J. Thakur, D. Ekka, dan I. Sahu, “Web Scraping Using Python,” Int. J. Adv. Eng. Manag., vol. 4, no. 9, hal. 235, 2022, doi: 10.35629/5252-0409235237.

[13] M. A. Chandra dan S. S. Bedi, “Survey on SVM and their application in image classification,” Int.

J. Inf. Technol., vol. 13, no. 5, 2021, doi: 10.1007/s41870-017-0080-1.

[14] Q. Wang, G. Zhu, S. Zhang, K. Li, X. Chen, dan H. Xu, “Extending emotional lexicon for improving the classification accuracy of Chinese film reviews,” Conn. Sci., vol. 0091, hal. 1–20, 2020, doi: 10.1080/09540091.2020.1782839.

[15] E. I. Setiawan, P. Tjendika, J. Santoso, F. X. Ferdinandus, Gunawan, dan K. Fujisawa, “Aspect- Based Sentiment Analysis of Healthcare Reviews from Indonesian Hospitals based on Weighted Average Ensemble,” J. Appl. Data Sci., vol. 5, no. 4, hal. 1579–1596, 2024, doi: 10.47738/jads.v5i4.328.

[16] H. K. Obayes, F. S. Al-Turaihi, dan K. H. Alhussayni, “Sentiment classification of user’s reviews on drugs based on global vectors for word representation and bidirectional long short-term memory recurrent neural network,” Indones. J. Electr. Eng. Comput. Sci., vol. 23, no. 1, hal. 345–353, 2021, doi: 10.11591/ijeecs.v23.i1.pp345-353.

[17] N. S. Mohd Nafis dan S. Awang, “An Enhanced Hybrid Feature Selection Technique Using Term Frequency-Inverse Document Frequency and Support Vector Machine-Recursive Feature Elimination for Sentiment Classification,” IEEE Access, vol. 9, no. Ml, hal. 52177–52192, 2021, doi: 10.1109/ACCESS.2021.3069001.

[18] I. Wickramasinghe dan H. Kalutarage, “Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation,” Soft Comput., vol. 25, no. 3, hal. 2277–2293, 2021, doi: 10.1007/s00500-020-05297-6.

[19] S. S A, “Comparative Study of Naive Bayes, Gaussian Naive Bayes Classifier and Decision Tree Algorithms for Prediction of Heart Diseases,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 9, no. 3, hal. 475–486, 2021, doi: 10.22214/ijraset.2021.33228.

[20] M. Yusran et al., “Comparison of Multinomial Naïve Bayes and Bernoulli Naïve Bayes on Sentiment Analysis of Kurikulum Merdeka with Query Expansion Ranking,” vol. 13, hal. 96–106, 2024.

[21] A. H. Odeh, M. Odeh, H. Odeh, dan N. Odeh, “Using Natural Language Processing for

Programming Language Code Classification with Multinomial Naive Bayes,” Rev. d’Intelligence Artif., vol. 37, no. 5, hal. 1229–1236, 2023, doi: 10.18280/ria.370515.

[22] A. Adadi, A survey on data‐efficient algorithms in big data era, vol. 8, no. 1. Springer International Publishing, 2021. doi: 10.1186/s40537-021-00419-9.

[23] S. Alter, “Understanding artificial intelligence in the context of usage: Contributions and smartness of algorithmic capabilities in work systems,” Int. J. Inf. Manage., vol. 67, no. November, 2022, doi: 10.1016/j.ijinfomgt.2021.102392.

[24] Y. Sibaroni, “Perbandingan Pembobotan Fitur TF-IDF dan TF-ABS Dalam Klasifikasi Berita Online Menggunakan Support Vector Machine (SVM) 2 nd,” e-Proceeding Eng., vol. 10, no. 3, hal. 3652–3655, 2023.

[25] Haniah Mahmudah, Okkie Puspitorini, Nur Adi Siswandari, Ari Wijayanti, dan Eliya Alfatekha, “Metode Naive Bayes Classifier – Smoothing pada Sensor Smartphone untuk Klasifikasi Aktivitas Pengendara,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 3, hal. 268–277, 2020, doi: 10.22146/.v9i3.382.

[26] L. Li, D. Song, R. Ma, X. Qiu, dan X. Huang, “KNN-BERT: Fine-Tuning Pre-Trained Models with KNN Classifier,” 2021, doi: https://doi.org/10.48550/arXiv.2110.02523.

[27] S. Suhirman dan H. Wintolo, “System for Determining Public Health Level Using the Agglomerative Hierarchical Clustering Method,” Compiler, vol. 8, no. 1, hal. 95, 2021, doi: 10.28989/compiler.v8i1.425.

[28] I. Made, S. Ramayu, F. Susanto, dan G. S. Mahendra, “Penerapan Data Mining Dengan Algoritma C4.5 Dalam Pemesanan Obat Guna Meningkatkan Keuntungan Apotek,” Online) SENADA, vol. 5, hal. 237–245, 2022.

[29] A. M. Elkhatat, K. Elsaid, dan S. Almeer, “Evaluating the efficacy of AI content detection tools in differentiating between human and AI-generated text,” Int. J. Educ. Integr., vol. 19, no. 1, hal. 1– 16, 2023, doi: 10.1007/s40979-023-00140-5.

Downloads

Published

2025-09-23