Perbandingan Kinerja RNN, LSTM, dan GRU dalam Prediksi Harga Saham TLKM Menggunakan Deep Learning

Authors

  • M Fawazi Hadi Universitas Bumigora, Mataram, Indonesia
  • Dadang Priyanto Universitas Bumigora, Mataram, Indonesia

DOI:

https://doi.org/10.30812/corisindo.v1.5381

Keywords:

Deep Learning, Prediksi Saham, RNN, LSTM, GRU

Abstract

Prediksi harga saham merupakan tantangan kompleks yang memerlukan pendekatan komputasi cerdas guna menangkap pola temporal dari data historis. Studi ini menganalisa kinerja tiga model jaringan saraf berulang, yaitu Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), dan Gated Recurrent Unit (GRU) dalam memprediksi harga penutupan saham PT Telkom Indonesia Tbk berdasarkan data deret waktu dari tahun 2019 hingga 2024. Dataset diperoleh dari Kaggle dan difokuskan pada variabel harga penutupan. Data diproses melalui normalisasi MinMaxScaler dan dibentuk dalam jendela waktu 60 hari. Evaluasi dilakukan menggunakan metrik RMSE dan MAE. Hasil menunjukkan bahwa GRU menghasilkan performa terbaik dengan nilai RMSE 48.77 dan MAE 34.87, diikuti oleh RNN, sementara LSTM menunjukkan performa terendah. Penelitian ini memberikan rekomendasi pemilihan arsitektur berdasarkan kompleksitas data pasar saham domestik.

References

[1] S. & Y. Hansun A., “Time series forecasting using ARIMA and deep learning models,” Int. J. Artif. Intell. Res., vol. 5, no. 2, pp. 87–95, 2021.

[2] M. A. Siregar & Hasanah, L. U., “Implementation of deep learning for financial forecasting,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 3, pp. 452–460, 2021.

[3] A. Maulana & Adityo, R. W., “Comparative study of LSTM and GRU for stock price prediction,” J. Intell. Syst., vol. 11, no. 1, pp. 33–42, 2022.

[4] D. Rahmadani & Firdaus, A., “Evaluating recurrent architectures for time series prediction,” Asia-Pacific J. Comput. Sci., vol. 10, no. 1, pp. 15–23, 2024.

[5] A. Wahyudi & Prasetyo, D. H., “GRU-based model for Indonesian stock market prediction,” Indones. J. Comput., vol. 12, no. 2, pp. 99–108, 2023.

[6] J. Brownlee, Deep Learning for Time Series Forecasting. 2021.

[7] J. Jang & Kim, T., “Comparative analysis of deep learning models for stock forecasting using TensorFlow and Keras,” J. Financ. Data Sci., vol. 7, no. 2, pp. 112–120, 2021.

[8] E. Setiawan & Hardiansyah, R., “Model evaluasi GRU untuk prediksi saham di Indonesia,” J. Tek. Inform. dan Sist. Inf., vol. 10, no. 2, pp. 203–212, 2022.

[9] A. Chandra & Purnomo, M. H., “A study on GRU efficiency in sequential modeling,” Mach. Learn. Appl., vol. 9, no. 3, pp. 221–229, 2023.

[10] Z. Zhao et al., “Deep learning algorithms for time-series stock prediction: An overview,” J. Comput. Financ., vol. 12, no. 1, pp. 34–49, 2020.

[11] A. Gupta & Singh, R., “Empirical analysis of GRU vs LSTM for financial forecasting,” Int. J. Data Sci., vol. 14, no. 2, pp. 55–66, 2023.

[12] L. Zhang & Lee, M., “On the effectiveness of GRU-based neural networks in financial forecasting,” J. Financ. Technol., vol. 6, no. 3, pp. 77–85, 2020.

[13] Y. Liu & Zhao, H., “Visualizing predictions in deep learning stock forecasting models,” Neural Comput. Appl., vol. 33, no. 1, pp. 111–123, 2021.

[14] D. Kusuma & Hartanto, A., “Visual performance of GRU for stock price movement,” J. AI Data Sci., vol. 5, no. 1, pp. 45–53, 2023.

[15] F. A. Rahman & Dewi, S., “Pengaruh parameter epoch dan batch size terhadap akurasi model RNN dan GRU,” J. Ilm. Teknol. dan Komput., vol. 9, no. 4, pp. 301–309, 2022.

Downloads

Published

2025-09-19