Prediksi Permintaan Reservasi Kamar Hotel Menggunakan Metode Fuzzy Time Series
DOI:
https://doi.org/10.30812/corisindo.v1.5298Keywords:
Forecasting, Fuzzy Time Series, Hotel, Operational ManagementAbstract
Hotel reservation demand forecasting is a crucial component in hotel management for operational optimization and profitability. Time series reservation data is often volatile and uncertain, thus requiring an adaptive forecasting model. This study objective is to implements the Fuzzy Time Series (FTS) method to predict the number of weekly room reservations at a hotel in Gili Trawangan. Historical reservation data for 54 weeks from June 2024 to June 2025 is processed through three main stages: determining the universe of discourse, fuzzifying the data into seven fuzzy sets, and extracting knowledge to form Fuzzy Logical Relationship Groups (FLRG). The forecasting results are evaluated using actual data and show good model performance in capturing demand fluctuation patterns. The model accuracy measured by the Mean Absolute Percentage Error (MAPE) produces a value of 11.69%, indicating that FTS is an effective and promising method for forecasting hotel room demand with dynamic data characteristics.
References
[1] E. İslamoğlu and N. Ö. Doğan, “Forecasting Tourism Demand: A Case Study Focusing on Spanish Tourist’s Travel to Cappadocia,” Pamukkale University Journal of Social Sciences Institute, Jul. 2020, doi: 10.30794/pausbed.679682.
[2] K. Gorbatiuk et al., “Application of fuzzy time series forecasting approach for predicting an enterprise net income level,” in E3S Web of Conferences, EDP Sciences, Jun. 2021. doi: 10.1051/e3sconf/202128002007.
[3] L. R. Weatherford and S. E. Kimes, “A comparison of forecasting methods for hotel revenue management,” Int J Forecast, vol. 19, no. 3, pp. 401–415, Jul. 2003, doi: 10.1016/S0169-2070(02)00011-0.
[4] J. G. Choi, Y. W. Zhang, N. I. B. M. Nadzri, N. Baymuminova, and S. N. Xu, “A Review of Forecasting Studies for the Hotel Industry: Focusing on results, contributions and limitations,” Global Business and Finance Review, vol. 27, no. 5, pp. 65–82, 2022, doi: 10.17549/gbfr.2022.27.5.65.
[5] A. Ampountolas, “Modeling and Forecasting Daily Hotel Demand: A Comparison Based on SARIMAX, Neural Networks, and GARCH Models,” Forecasting, vol. 3, no. 3, pp. 580–595, Sep. 2021, doi: 10.3390/forecast3030037.
[6] V. Vivianti, M. Aidid, and M. Nusrang, “Implementasi Metode Fuzzy Time Series untuk Peramalan Jumlah Pengunjung di Benteng Fort Rotterdam,” VARIANSI: Journal of Statistics and Its application on Teaching and Research, vol. 2, p. 1, Mar. 2020, doi: 10.35580/variansiunm12904.
[7] M. Hisyam Lee, M. Elena Nor, H. Javedani Sadaei, N. Haizum Abd Rahman, and N. Arina Bazilah Kamisan, “Fuzzy Time Series: An Application to Tourism Demand Forecasting,” Am J Appl Sci, vol. 9, no. 1, pp. 132–140, 2012.
[8] N. Dowlut and B. Gobin-Rahimbux, “Forecasting resort hotel tourism demand using deep learning techniques – A systematic literature review,” Heliyon, vol. 9, no. 7, Jul. 2023, doi: 10.1016/j.heliyon.2023.e18385.
[9] R. Aliyev, S. Salehi, and R. Aliyev, “Development of fuzzy time series model for hotel occupancy forecasting,” Sustainability (Switzerland), vol. 11, no. 3, Feb. 2019, doi: 10.3390/su11030793.
[10] R. Widyastuti, D. Wulandari, and D. Prasetyowati, “Analisis Perbandingan Metode Fuzzy Time Series Model Singh dan Markov Chain untuk Prediksi Tingkat Penghunian Kamar Hotel Bintang di Yogyakarta,” STATMAT : JURNAL STATISTIKA DAN MATEMATIKA, vol. 7, no. 1, Apr. 2025, doi: https://doi.org/10.32493/sm.v7i1.48599.
[11] S. Imalin, V. Anithakumari, V. M. Arul, and F. Mary, “A Comparative Study on Fuzzy Time Series Forecasting and Autoregressive Integrated Moving Average Models,” 2023.
[12] K. Gorbatiuk et al., “Application of fuzzy time series forecasting approach for predicting an enterprise net income level,” in E3S Web of Conferences, EDP Sciences, Jun. 2021. doi: 10.1051/e3sconf/202128002007.
[13] D. Rajan and R. Sugunthakunthalambigai, “On Forecasting Time Series Analysis Under Fuzzy Enviroment,” Advances and Applications in Mathematical Sciences, vol. 22, no. 7, pp. 1581–1592, 2023.
[14] C. Rahmad, M. Febry Ramadhani, D. Puspitasari, J. T. Informasi, and P. N. Malang, “Peramalan Jumlag Kedatangan Wisawatan Mancanegara dengan Menggunakan Metode Time Invariant Fuzzy Time Series (Sudi Kasus : Wisata Kabupaten Pasuruan),” 2018.
[15] K. S. Kannan, M. Sulaigabeevi, S. Syed, and A. Fathima, “Comparison Of Fuzzy Time Series And ARIMA Model,” INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, vol. 8, p. 8, 2019, [Online]. Available: www.ijstr.org
[16] Rahayu Dwiastuti Pujiningrum and W. Sulistijanti, “Peramalan Tingkat Penghunian Kamar Hotel Bintang Lima Provinsi Bali Menggunakan Metode ARIMA dan Fuzzy Time Series Lee,” JURNAL SOSIAL EKONOMI DAN HUMANIORA, vol. 10, no. 2, pp. 158–166, Jun. 2024, doi: 10.29303/jseh.v10i2.520.
[17] Okia Dinda Kelana, Atus Amadi Putra, Nonong Amalita, and Admi Salma, “Comparison of the Chen and Sinsgh’s Fuzzy Time Series Methods in Forecasting Farmer Exchange Rates in Indonesia,” UNP Journal of Statistics and Data Science, vol. 1, no. 4, pp. 264–270, Aug. 2023, doi: 10.24036/ujsds/vol1-iss4/36.
[18] P. O. Lucas, O. Orang, P. C. L Silva, I. M. Eduardo A M Mendes, and F. G. Guimarães, “A Tutorial on Fuzzy Time Series Forecasting Models: Recent Advandces and Challenges,” 2021.
[19] M. Bose and K. Mali, “Designing fuzzy time series forecasting models: A survey,” International Journal of Approximate Reasoning, vol. 111, pp. 78–99, Aug. 2019, doi: 10.1016/j.ijar.2019.05.002.
[20] T. Afanasieva, N. Yarushkina, M. Toneryan, D. Zavarzin, A. Sapunkov, and I. Sibirev, “Time series forecasting using fuzzy techniques,” 2015. [Online]. Available: http://irafm.osu.cz/cif/main.php