Analisis Regresi Spasial dan Pola Penyebaran pada Kasus Demam Berdarah Dengue (DBD)
DOI:
https://doi.org/10.30812/corisindo.v1.5264Keywords:
Dengue Hemorrhagic Fever, spatial regression, NTBAbstract
Dengue Hemorrhagic Fever (DHF) is one of the endemic diseases whose spread is greatly influenced by environmental conditions, available health facilities, and the spatiality of an area. This study aims to analyze the pattern of DHF case distribution in NTB Province using the spatial regression method. By utilizing secondary data obtained from 2022, this study also analyzes the influence of five independent variables, namely population, number of general hospitals, poverty rate, number of health centers, and number of houses affected by flooding on the number of DHF cases in each district/city. Spatial analysis was carried out using the Spatial Autoregressive (SAR) model, preceded by a positive spatial autocorrelation test through the Moran index. The results of the study showed significant positive spatial autocorrelation (p <0.05), which indicates that areas with a high number of cases tend to border areas with high cases. The SAR model was proven to be better than the OLS model based on the R² (0.9986) and AIC (101.669) values. This finding is expected to be the basis for planning priority area interventions in controlling DHF cases in NTB Province in a spatial and targeted manner.
References
[1] F. Fadli and B. Butar Butar, “Penerapan Decision Tree Menggunakan Algoritma C4.5 Untuk Deteksi Demam Berdarah Pada RS. IMC Bintaro,” IJSE-Indonesian J. Softw. Eng., vol. 5, no. 1, pp. 75–86, 2019.
[2] L. Iryani, N. Ilma, H. Kunio, and A. S. Wati, “Optimasi Metode Naïve Bayes Menggunakan Smoothing dan Feature Selection Untuk Penyakit Demam Berdarah Dengue,” JSAI J. Sci. Appl. Informatics, vol. 7, no. 3, 2024, doi: 10.36085.
[3] P. S. Rosiana, A. A. Mohsa, and Y. Umaidah, “Implementasi K-Means dalam Pengelompokan Penyebaran Penyakit DBD di Jawa Barat,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 3, Aug. 2023, doi: 10.23960/jitet.v11i3.3344.
[4] D. N. Kalsum, S. P. A. Alkadri, and I. Istikoma, “Implementation of Data Mining to Predict Dengue Prone Areas Using C4.5 Algorithm (Case Study: Sanggau Regency),” Smart Comp Jurnalnya Orang Pint. Komput., vol. 14, no. 1, Jan. 2025, doi: 10.30591/smartcomp.v14i1.7540.
[5] B. Medika Jurnal, M. Wahyu Aditya, I. N. Sukajaya, and I. Gede Aris Gunadi, “Forecasting Jumlah Pasien DBD di BRSUD Kabupaten Tabanan Menggunakan Metode Regresi Linier Forecasting The Number of DHF Patients in Tabanan District BRSUD Using Linear Regression Method,” Bali Med. J., vol. 10, no. 1, pp. 1–12, doi: 10.36376/bmj.v9i3.
[6] M. Hariyanto and R. Tahara Shita, “17 Clustering Pada Data Mining Untuk Mengetahui Potensi Penyebaran Penyakit DBD Menggunakan Metode Algoritma K-Means dan Metode Perhitungan Jarak Euclidean Distance Clustering Pada Data Mining Untuk Mengetahui Potensi Penyebaran Penyakit DBD Menggunakan Metode Algoritma K-Means dan Metode Perhitungan Jarak Euclidean Distance,” 2018.
[7] I. M. Yudha Arya Dala, I. K. Gede Darma Putra, and P. Wira Buana, “Forecasting Cases of Dengue Hemorrhagic Fever Using the Backpropagation, Gaussians and Support-Vector Machine Methods,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 2, pp. 335–341, Apr. 2021, doi: 10.29207/resti.v5i2.2936.
[8] I. F. Fatati, H. Wijayanto, and A. M. Sholeh, “Analisis Spasial Dan Pola Penyebaran Pada Kasus Demam Berdarah Dengue (DBD) Di Provinsi Jawa Tengah,” MEDIA Stat., vol. 10, no. 2, p. 95, Dec. 2017, doi: 10.14710/medstat.10.2.95-105.
[9] A. H. Elizabeth and R. Yudhastuti, “Gambaran Kasus Demam Berdarah Dengue (DBD) di Provinsi Jawa Barat Tahun 2016-2020,” Media Gizi Kesmas, vol. 12, no. 1, pp. 179–186, Jun. 2023, doi: 10.20473/mgk.v12i1.2023.179-186.
[10] M. Halid, “dan Sikap Masyar akat di Kelurahan Tanjung Karang , Provinsi Nusa Tenggara Barat,” J. Masy. Madani Indones., vol. 1, no. 2, pp. 46–52, 2022.
[11] N. Made Surya Jayanti, I. Wayan Sumarjaya, and M. Susilawati, “Pemodelan Penyebaran Kasus Demam Berdarah Dengue (DBD) di Kota Denpasar dengan Metode Spasial Autoregressive (SAR),” vol. 6, no. 1, pp. 37–46, 2017.
[12] H. Susmaneli, U. Hidayati, Y. Agnesia, P. K. Masyarakat, and F. Kesehatan, “Faktor-Faktor yang Berhubungan Dengan Keberadaan Jentik Nyamuk Aedes Aegypti The Factors That Associated with The Density of Aedes Aegypti Larvae,” 2024.
[13] F. Nugraha, B. Haryanto, R. A. Wulandari, and T. T. Pakasi, “Studi Ekologi Hubungan Kejadian Demam Berdarah Dengue (DBD) dengan Faktor Iklim di Kota Administrasi Jakarta Pusat, Indonesia Tahun 1999-2018,” J. Ilmu Kesehat. Masy., vol. 10, no. 03, pp. 142–148, Sep. 2021, doi: 10.33221/jikm.v10i03.923.
[14] C. Christine, G. S. G. Fitri, and M. Mustafa, “Epidemiologi Demam Berdarah Dengue di Kota Palu Tahun 2019 – 2023,” Banua J. Kesehat. Lingkung., vol. 4, no. 2, pp. 57–65, Dec. 2024, doi: 10.33860/bjkl.v4i2.4075.
[15] N. Suhandi, E. Ayu, K. Putri, and S. Agnisa, “Analisis Pengaruh Jumlah Penduduk terhadap Jumlah Kemiskinan Menggunakan Metode Regresi Linear di Kota Palembang”.
[16] I. P. Ningtias and S. P. Rahayu, “Pemodelan Faktor-faktor yang Mempengaruhi Tingkat Pengangguran Terbuka di Provinsi Jawa Timur Tahun 2015 Menggunakan Regresi Spasial,” J. Sains dan Seni ITS, vol. 6, no. 2, 2017, doi: 10.12962/j23373520.v6i2.24984.
[17] A. P. N. Taryono, D. Ispriyanti, and A. Prahutama, “Analisis Faktor-Faktor yang Mempengaruhi Penyebaran Penyakit Demam Berdarah Dengue (Dbd) di Provinsi Jawa Tengah dengan Metode Spatial Autoregressive Model dan Spatial Durbin Model,” Indones. J. Appl. Stat., vol. 1, no. 1, p. 1, 2018, doi: 10.13057/ijas.v1i1.24026.
[18] A. Salam, S. S. Prasetiyowati, and Y. Sibaroni, “ARJUNA) Managed by Ministry of Research, Technology, and Higher Education,” Accredit. by Natl. J. Accredit., vol. 4, no. 2, pp. 531–536, 2020, [Online]. Available: http://jurnal.iaii.or.id