Prediksi Produksi Jagung dengan Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA)
DOI:
https://doi.org/10.30812/corisindo.v1.5263Keywords:
Forcasting, Corn, ARIMA, NTB, Time SeriesAbstract
West Nusa Tenggara (NTB) is one of the largest corn producing provinces in Indonesia, but its production has not been optimal to meet the increasing domestic and global demand. Along with the rapid growth of industry in the Asian region, the supply of corn in the world market tends to be limited, which is around 13% of the total world corn production, this creates a gap between demand and availability. This study aims to predict corn production trends in NTB using the Autoregressive Integrated Moving Average (ARIMA) method based on time series data from 2001–2023 from NTB Satu Data. The ARIMA method was chosen because of its ability to model historical data patterns without independent variables, making it suitable for short-term forecasting in the agricultural sector. The forecast results show that corn production in West Nusa Tenggara Province is expected to continue to increase from 2024 to 2028, with an average annual growth of 4.78%. However, this growth rate tends to decrease from year to year, indicating a slowdown in the rate of production growth. The use of the ARIMA method is effective as a prediction tool for strategic planning to increase corn production, reduce dependence on imports, and stabilize market prices.
References
[1] Adha, M., Utami, E., & Hanafi, H. (2022). Prediksi Produksi Jagung Menggunakan Algoritma Apriori Dan Regresi Linear Berganda (Studi Kasus : Dinas Pertanian Kabupaten Dompu). JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 7(3), 803–820. doi:10.29100/jipi.v7i3.3139
[2] Rauf, A. M. (2020). The Analysis Opportunities for Corn Exports West Nusa Tenggara. AGROTEKSOS, 28(2), 86. doi:10.29303/agroteksos.v28i2.348
[3] Pertanian, K. (2023). Analisis Kinerja Perdagangan Jagung Tahun 2023. Jakarta. Retrieved from https://satudata.pertanian.go.id/assets/docs/publikasi/1B_Analisis_Kinerja_Perdagangan_Jagung_2023.pdf
[4] Sukardi, L., Suparyana, P. K., & Septiadi, D. (2023). Tingkat Stabilitas Hasil Produksi Jagung Di Nusa Tenggara Barat. Agroteksos, 33(1), 237. doi:10.29303/agroteksos.v33i1.823
[5] Sayuti, R. H., & Taqiuddin, M. (2020). Performance Analysis of Agriculture Sector in Alleviating Poverty on West. AGROTEKSOS, 30(April), 11–17.
[6] Pallo, M., Luik, R., & Pandu, M. J. (2024, December). Peramalan Produksi Jagung Di Kecamatan Amabi Oefeto Menggunakan Arima. In Prosiding Seminar Nasional Hasil-Hasil Penelitian (Vol.7, No. 1, pp. 561-571).
[7] Fauzani, S. P., & Rahmi, D. (2023). Penerapan Metode ARIMA Dalam Peramalan Harga Produksi Karet di Provinsi Riau. Jurnal Teknologi Dan Manajemen Industri Terapan, 2(4), 269–277. doi:10.55826/tmit.v2i4.283
[8] Buchori, M., & Sukmono, T. (2018). Peramalan Produksi Menggunakan Metode Autoregressive Integrated Moving Average. 2(1), 27–33. doi:10.21070/prozima.v2i1.1290
[9] Qonita, A., Pertiwi, A. G., & Widiyaningtyas, T. (2017). Prediction of rupiah against us dollar by using arima. International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 4(September), 746–750. doi:10.11591/eecsi.4.1096
[10] Ahmar, A. S., Guritno, S., Rahman, A., Minggi, I., Tiro, M. A., Aidid, M. K., & Arifin, A. N. M. (2018). Pemodelan data yang mengandung outlier menggunakan outlier aditif ARIMA (ARIMA-AO). Jurnal Fisika: Seri Konferensi, 954(1), 012010. doi:10.1088/1742-6596/954/1/012010
[11] Zuhdi, F., Nurjannah, D., & Rahly, F. (2023). Peramalan Produksi Telur Itik di Provinsi Aceh dengan Pendekatan Autoregressive Integrated Moving Average. Jurnal Veteriner, 24(1), 22–31. doi:10.19087/jveteriner.2023.24.1.22
[12] D. Casadei., G. Serra., & K. Tani. (2007). Implementation of a Direct Control Algorithm for Induction Motors Based on Discrete Space Vector Modulation, IEEE Transactions on Power Electronics, 15(4), 769–777.
[13] Sperry, RW (1986). Sains, nilai, dan kelangsungan hidup. Jurnal psikologi humanistik , 26 (2), 8-23. doi:10.1177/0022167886262002
[14] Hajjah, A., & Marlim, Y. N. (2021). Analisis error terhadap peramalan data penjualan. Techno. Com, 20(1), 1-9.
[15] Utomo, P., & Fanani, A. (2020). Peramalan jumlah penumpang kereta api di Indonesia menggunakan metode seasonal autoregressive integrated moving average (SARIMA). Jurnal Mahasiswa Matematika ALGEBRA, 1(1), 169-178.