Improving the Classification Performance of Bovine ScabiesUsing Edited Nearest Neighbours (ENN) on Random Forestand XGBoost Models
DOI:
https://doi.org/10.30812/bite.v7i2.6055Keywords:
Classification, Cattle Scabies, Edited Nearest Neighbours, Machine Learning, Random Forest, XGBoostAbstract
Background: Scabies disease in cattle causes significant economic losses for farmers due to declines in the animals’
physical condition and productivity.
Objective: This study aims to evaluate the effectiveness of the Edited Nearest Neighbours (ENN) method in improving
classification performance for scabies in cattle.
Methods: This research employs machine learning methods, including Random Forest and XGBoost. A dataset of 600
clinical symptom samples was converted to numerical data and cleaned of noise using the ENN technique.
Result: Applying ENN significantly improved the accuracy of both the Random Forest and XGBoost models, increasing it
from around 0.60 to 0.91. In addition, both models achieved a perfect recall of 1.00, indicating maximum capability to
detect positive cases.
Conclusion: This study concludes that noise reduction using ENN can produce a more accurate and reliable diagnostic
system. This method is highly recommended to optimize the performance of classification algorithms on animal clinical
data with high levels of inconsistency.
Downloads
References
[1] I. Indah dan N. Nurmayanti, “Identifikasi Kasus Sarcoptes scabiei pada Hewan Peliharaan di UPTD Pusat
Kesehatan Hewan Makassar,” Filogeni: Jurnal Mahasiswa Biologi, vol. 3, no. 2, pp. 106–111, 2023.
[2] S. Marwah, R. Astuti, dan F. M. Basysyar, “Implementasi Data Mining Menggunakan Algoritma Na¨ıve
Bayes untuk Diagnosis Penyakit Kulit Scabies pada Hewan,” JATI (Jurnal Mahasiswa Teknik Informatika),
vol. 7, no. 6, pp. 3892–3897, Feb. 7, 2024. doi: 10.36040/jati.v7i6.8276.
[3] A. P. Ramadhani, “Analisis Performa Algoritma Support Vector Machine dan Algoritma K-Nearest
Neighbors untuk Kasus Penyakit Mulut dan Kuku pada Sapi di Jawa Timur,” Journal Zetroem, vol. 6,
no. 1, pp. 73–78, Mar. 8, 2024. doi: 10.36526/ztr.v6i1.3489.
[4] C. Sukmawati, “Algoritma Na¨ıve Bayes, Random Forest dan Support Vector Machine untuk Klasifikasi
Penyakit Sapi,” Techno Xplore : Jurnal Ilmu Komputer dan Teknologi Informasi, vol. 9, no. 1, pp. 44–50,
May 20, 2024. doi: 10.36805/technoxplore.v9i1.6480.
[5] M. I. Ichsan, “Implementasi Machine Learning untuk Deteksi Penyakit pada Kucing Menggunakan Random
Forest,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 13, pp. 2000–2010, 3S1 Oct. 19, 2025. doi:
10.23960/jitet.v13i3S1.8164.
[6] S. Das, R. K. Roy, dan T. Bezboruah, “Machine Learning in Animal Healthcare: A Comprehensive
Review,” International Journal of Recent Engineering Science, vol. 11, no. 3, pp. 89–93, Jun. 30, 2024.
doi: 10.14445/23497157/IJRES-V11I3P109.
[7] I. D. Sulistyowati, S. Sunarno, dan D. Djuniadi, “Penerapan machine learning dengan algoritma support
vector machine untuk prediksi kelembapan udara rata-rata,” id, Jurnal Sistem Informasi, Teknologi
Informatika dan Komputer, vol. 15, no. 1, pp. 284–290, Sep. 30, 2024. doi: 10.24853/justit.15.1.284-
290.
[8] R. K. Halder et al., “Enhancing K-Nearest Neighbor Algorithm: A Comprehensive Review and Performance
Analysis of Modifications,” en, Journal of Big Data, vol. 11, no. 1, p. 113, Aug. 11, 2024. doi: 10.1186/
s40537-024-00973-y.
[9] A. S. Salsabila, F. Sthevanie, dan K. N. Ramadhani, “Scabies Classification in Animal Using Uniform Local
Binary Patterns,” in 2020 12th International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Indonesia: IEEE, Oct. 6, 2020, pp. 356–361. doi: 10.1109/ICITEE49829.
2020.9271720.
[10] M. F. Syam, M. N. Y. Utomo, dan E. Tungadi, “Cattle Disease Diagnosis System Using Random Forest
Classification Method,” en, Journal of Informatics and Computer Engineering Research, vol. 2, no. 1,
pp. 1–8, Aug. 7, 2025. doi: 10.31963/jicer.v2i1.5563.
[11] X. E. K. Permana, N. A. R. Rais, dan M. Muqorobin, “Classification of Cattle Diseases in Semin District
Using Convolutional Neural Network (CNN),” en, International Journal of Computer and Information
System (IJCIS), vol. 5, no. 2, pp. 125–131, Jun. 30, 2024. doi: 10.29040/ijcis.v5i2.172.
[12] C. Eirene et al., “Classification of Learning Styles of Junior High School Students Using Random Forest &
XGBoost Algorithm,” Jurnal Bumigora Information Technology (BITe), vol. 7, no. 1, pp. 15–24, Jun. 19,
2025. doi: 10.30812/bite.v7i1.4913.
[13] D. Priyanto et al., “Optimization of Random Forest for Health Data Classification Using PCA and K-Means
SMOTE-ENN,” en, Engineering, Technology & Applied Science Research, vol. 15, no. 5, pp. 27 646–27 652,
Oct. 6, 2025. doi: 10.48084/etasr.12976.
[14] M. K. Ihsan, D. S. C. Saputri, dan N. Sulistianingsih, “Perbandingan algoritma boosting untuk klasifikasi
gaya belajar siswa sekolah menengah kejuruan,” id, Jutisi : Jurnal Ilmiah Teknik Informatika dan Sistem
Informasi, vol. 14, no. 2, pp. 963–974, Aug. 6, 2025. doi: 10.35889/jutisi.v14i2.2701.
[15] F. Brishti et al., “Imbalanced Classification with Label Noise: A Systematic Review and Comparative
Analysis,” en, ICT Express, vol. 11, no. 6, pp. 1127–1145, Dec. 2025. doi: 10.1016/j.icte.2025.09.011.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 M. Khaerul Ihsan, Muhammad Maulana; Tanwir Tanwir; Abi Mas’ud, Naufal Hanif, Dading Oktaviadi Resmiranta

This work is licensed under a Creative Commons Attribution 4.0 International License.








