Sales Forecasting of Oyster Mushrooms Using Simple LinearRegression: A Case Study of Tugumukti SMEs
DOI:
https://doi.org/10.30812/bite.v7i2.5572Keywords:
Oyster Mushroom, Sales Prediction, Simple Linear RegressionAbstract
Background: One of the primary challenges in oyster mushroom cultivation is the imbalance between production capacity
and market demand, as business owners struggle to forecast sales accurately.
Objective: This study aims to test the predictive power of simple linear regression for white oyster mushroom sales at the
SME level.
Methods: This study uses a simple linear regression model, using 20 months of historical sales data, split into training
and test sets at 80:20, with time as the predictor variable.
Result: The evaluation resulted in a Mean Absolute Error (MAE) value of 775,203, Root Mean Squared Error (RMSE)
of 813,411, and Mean Absolute Percentage Error (MAPE) of 13.05%, which is categorised as good.
Conclusion: This study contributes to the literature on agricultural commodity forecasting, particularly oyster mushrooms,
by demonstrating the relevance of simple linear regression. These findings have implications for accurate production
planning and reducing the risk of overproduction.
Downloads
References
1] E. Mesele, A. T. Yaekob, dan A. Zeslassie, “Valuation of the growth response of oyster (Pleurotus ostreatus)
mushroom on partially composted sesame stalk with different blends of wheat straw,” Discover Food, vol. 4,
no. 1, p. 80, Aug. 2024. doi: 10.1007/s44187-024-00147-y.
[2] S. F. Fauziyah, S. Saparto, dan R. S. Prayitno, “Analisis Usahatani Jamur Tiram Putih (Pleurotus Ostreatus)
di Kecamatan Ungaran Timur Kabupaten Semarang,” Agrisaintifika: Jurnal Ilmu-Ilmu Pertanian, vol. 5,
no. 2, pp. 133–141, Dec. 2021. doi: 10.32585/ags.v5i2.1282.
[3] F. Fadli, A. F. Utama FR, dan L. Hidayati, “Kajian Kelayakan Usahatani Jamur Tiram Putih (Pleurotus
ostreatus) (Studi Kasus Pada UMKM Agro Jamur Lombok Kecamatan Gunungsari Kecamatan Lombok
Barat),” JURNAL SAINS TEKNOLOGI & LINGKUNGAN, vol. 11, no. 2, pp. 285–294, Jun. 2025. doi:
10.29303/jstl.v11i2.876.
[4] S. Cerah dan E. Syahnaz, “Peningkatan Daya Saing Melalui Strategi Pemasaran Jamur Tiram Putih
(Studi Kasus) di Desa Bekut,” Jurnal Social Economic of Agriculture, vol. 9, no. 2, p. 113, Dec. 2020. doi:
10.26418/j.sea.v9i2.41842.
[5] A. Tiupova, R. Ol�dzki, dan J. Harasym, “Physicochemical, Functional, and Antioxidative Characteristics
of Oyster Mushrooms,” Applied Sciences, vol. 15, no. 3, p. 1655, Feb. 2025. doi: 10.3390/app15031655.
[6] I. Choeri, D. P. Ariyanti, dan C. D. Auliya, “Peningkatan Daya Saing Produk Jamur Tiram di Desa
Srikandang Melalui Inovasi Strategi Pemasaran Digital dan Desain Kemasan,” Profetik: Jurnal Pengabdian
Masyarakat, vol. 2, no. 2, pp. 49–62, Dec. 2024. doi: 10.62490/profetik.v2i02.687.
[7] P. A. Duran et al., “Data Mining Untuk Prediksi Penjualan Menggunakan Metode Simple Linear Regression,”
Teknika, vol. 13, no. 1, pp. 27–34, Jan. 2024. doi: 10.34148/teknika.v13i1.712.
[8] A. M. A. Rusdy, P. Purnawansyah, dan H. Herman, “Penerapan Metode Regresi Linear Pada Prediksi
Penawaran dan Permintaan Obat Studi Kasus Aplikasi Point Of Sales,” Buletin Sistem Informasi dan
Teknologi Islam, vol. 3, no. 2, pp. 121–126, May 2022. doi: 10.33096/busiti.v3i2.1130.
[9] S. Lestari, “Analisis Algoritma Regresi Linear Sederhana dalam Memprediksi Tingkat Penjualan Album
KPOP,” INSOLOGI: Jurnal Sains dan Teknologi, vol. 2, no. 1, pp. 199–209, Feb. 2023. doi: 10.55123/
insologi.v2i1.1692.
[10] F. H. Hamdanah dan D. Fitrianah, “Analisis Performansi Algoritma Linear Regression dengan Generalized
Linear Model untuk Prediksi Penjualan pada Usaha Mikra, Kecil, dan Menengah,” Jurnal Nasional
Pendidikan Teknik Informatika (JANAPATI), vol. 10, no. 1, p. 23, Apr. 2021. doi: 10.23887/janapati.
v10i1.31035.
[11] E. A. N. Sonjaya, D. Herwanto, dan D. N. Rinaldi, “Analisis Perbandingan Metode Moving Average dan
Linear Regression Pada Produk Pupuk Urea,” Syntax Literate : Jurnal Ilmiah Indonesia, vol. 7, no. 7,
pp. 10 265–10 276, Jul. 2022. doi: 10.36418/syntax-literate.v7i7.11556.
[12] A. T. Widiyatmoko, S. Butsianto, dan A. Nugroho, “Penerapan Machine Learning untuk Prediksi Kenaikan
Harga Beras Premium Menggunakan Algoritma Regresi Linier,” MALCOM: Indonesian Journal of Machine
Learning and Computer Science, vol. 5, no. 3, pp. 1125–1132, Aug. 2025. doi: 10.57152/malcom.v5i3.2123.
[13] E. Hulu et al., “Analisis Ramalan Volume Penjualan Semen Dengan Metode Time Series Di UD.Denis Kota
Gunungsitoli,” Jurnal Ekonomi Bisnis, Manajemen dan Akuntansi (JEBMA), vol. 4, no. 3, pp. 2047–2056,
Nov. 2024. doi: 10.47709/jebma.v4i3.4727.
[14] L. H. Hasibuan et al., “Analisis Metode Single Exponential Smoothing dan Metode Regresi Linearu untuk
Prediksi Harga Daging Ayam Ras,” Math Educa Journal, vol. 6, no. 2, pp. 120–130, Oct. 2022. doi:
10.15548/mej.v6i2.3872.
[15] B. A. Celik dan S. Celik, “Hybrid forecasting of agricultural commodity prices: Integrating machine learning,
time series, and stochastic simulation models,” Borsa Istanbul Review, vol. 25, no. 6, pp. 1440–1462, Nov.
2025. doi: 10.1016/j.bir.2025.10.004.
[16] I. Ilic et al., “Explainable boosted linear regression for time series forecasting,” Pattern Recognition, vol. 120,
p. 108 144, Dec. 2021. doi: 10.1016/j.patcog.2021.108144.
[17] N. Roustaei, “Application and interpretation of linear-regression analysis,” Medical hypothesis discovery and
innovation in ophthalmology, vol. 13, no. 3, pp. 151–159, Oct. 2024. doi: 10.51329/mehdiophthal1506.
[18] P. Ali dan A. Younas, “Understanding and interpreting regression analysis,” Evidence Based Nursing,
vol. 24, no. 4, pp. 116–118, Oct. 2021. doi: 10.1136/ebnurs-2021-103425.
[19] H. S. Al-zboon dan M. I. Y. Alharayzeh, “The Impact of Guessing on the Accuracy of Estimating Simple
Linear Regression Equation Parameters and the Ability to Predict,” International Journal of Instruction,
vol. 16, no. 2, pp. 927–944, Apr. 2023. doi: 10.29333/iji.2023.16249a.
[20] Y. H. Agustin, E. Satria, dan F. Siti Nursifa, “Prediksi Jumlah Pengunjung Pariwisata di Kabupaten
Garut Menggunakan Algoritma Regresi Linear,” Jurnal Algoritma, vol. 22, no. 1, pp. 569–581, Jun. 2025.
doi: 10.33364/algoritma/v.22-1.1807.
[21] S. M. Robeson dan C. J. Willmott, “Decomposition of the mean absolute error (MAE) into systematic
and unsystematic components,” PLOS ONE, vol. 18, no. 2, F. Zama, Ed., e0279774, Feb. 2023. doi:
10.1371/journal.pone.0279774.
[22] K. T. Kizgin et al., “Machine learning-based sales forecasting during crises: Evidence from a Turkish
women’s clothing retailer,” Science Progress, vol. 108, no. 1, Jan. 2025. doi: 10.1177/00368504241307719.
[23] Siti Maisaroh dan Ryci Rahmatil Fiska, “Implementasi Algoritma Regresi Linier Berganda untuk Prediksi
Penjualan di D’Kopikap,” Jurnal Teknik Informatika dan Teknologi Informasi, vol. 5, no. 1, pp. 114–131,
May 2025. doi: 10.55606/jutiti.v5i1.5149.
[24] T. Iida, “Identifying causes of errors between two wave-related data using performance metrics,” Applied
Ocean Research, vol. 148, p. 104 024, Jul. 2024. doi: 10.1016/j.apor.2024.104024.
[25] A. T. Nurani, A. Setiawan, dan B. Susanto, “Perbandingan Kinerja Regresi Decision Tree dan Regresi
Linear Berganda untuk Prediksi BMI pada Dataset Asthma,” Jurnal Sains dan Edukasi Sains, vol. 6,
no. 1, pp. 34–43, May 2023. doi: 10.24246/juses.v6i1p34-43.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Hilman Fauji Abdilah, Diana Effendi

This work is licensed under a Creative Commons Attribution 4.0 International License.








