Sales Forecasting of Oyster Mushrooms Using Simple LinearRegression: A Case Study of Tugumukti SMEs

Authors

  • Hilman Fauji Abdilah Universitas Komputer Indonesia
  • Diana Effendi Universitas Komputer Indonesia

DOI:

https://doi.org/10.30812/bite.v7i2.5572

Keywords:

Oyster Mushroom, Sales Prediction, Simple Linear Regression

Abstract

Background: One of the primary challenges in oyster mushroom cultivation is the imbalance between production capacity
and market demand, as business owners struggle to forecast sales accurately.
Objective: This study aims to test the predictive power of simple linear regression for white oyster mushroom sales at the
SME level.
Methods: This study uses a simple linear regression model, using 20 months of historical sales data, split into training
and test sets at 80:20, with time as the predictor variable.
Result: The evaluation resulted in a Mean Absolute Error (MAE) value of 775,203, Root Mean Squared Error (RMSE)
of 813,411, and Mean Absolute Percentage Error (MAPE) of 13.05%, which is categorised as good.
Conclusion: This study contributes to the literature on agricultural commodity forecasting, particularly oyster mushrooms,
by demonstrating the relevance of simple linear regression. These findings have implications for accurate production
planning and reducing the risk of overproduction.

Downloads

Download data is not yet available.

Author Biographies

  • Hilman Fauji Abdilah, Universitas Komputer Indonesia

    Program Studi Sistem Informasi, Universitas Komputer Indonesia

  • Diana Effendi, Universitas Komputer Indonesia

    Program Studi Manajemen Informatika, Universitas Komputer Indonesia

References

1] E. Mesele, A. T. Yaekob, dan A. Zeslassie, “Valuation of the growth response of oyster (Pleurotus ostreatus)

mushroom on partially composted sesame stalk with different blends of wheat straw,” Discover Food, vol. 4,

no. 1, p. 80, Aug. 2024. doi: 10.1007/s44187-024-00147-y.

[2] S. F. Fauziyah, S. Saparto, dan R. S. Prayitno, “Analisis Usahatani Jamur Tiram Putih (Pleurotus Ostreatus)

di Kecamatan Ungaran Timur Kabupaten Semarang,” Agrisaintifika: Jurnal Ilmu-Ilmu Pertanian, vol. 5,

no. 2, pp. 133–141, Dec. 2021. doi: 10.32585/ags.v5i2.1282.

[3] F. Fadli, A. F. Utama FR, dan L. Hidayati, “Kajian Kelayakan Usahatani Jamur Tiram Putih (Pleurotus

ostreatus) (Studi Kasus Pada UMKM Agro Jamur Lombok Kecamatan Gunungsari Kecamatan Lombok

Barat),” JURNAL SAINS TEKNOLOGI & LINGKUNGAN, vol. 11, no. 2, pp. 285–294, Jun. 2025. doi:

10.29303/jstl.v11i2.876.

[4] S. Cerah dan E. Syahnaz, “Peningkatan Daya Saing Melalui Strategi Pemasaran Jamur Tiram Putih

(Studi Kasus) di Desa Bekut,” Jurnal Social Economic of Agriculture, vol. 9, no. 2, p. 113, Dec. 2020. doi:

10.26418/j.sea.v9i2.41842.

[5] A. Tiupova, R. Ol�dzki, dan J. Harasym, “Physicochemical, Functional, and Antioxidative Characteristics

of Oyster Mushrooms,” Applied Sciences, vol. 15, no. 3, p. 1655, Feb. 2025. doi: 10.3390/app15031655.

[6] I. Choeri, D. P. Ariyanti, dan C. D. Auliya, “Peningkatan Daya Saing Produk Jamur Tiram di Desa

Srikandang Melalui Inovasi Strategi Pemasaran Digital dan Desain Kemasan,” Profetik: Jurnal Pengabdian

Masyarakat, vol. 2, no. 2, pp. 49–62, Dec. 2024. doi: 10.62490/profetik.v2i02.687.

[7] P. A. Duran et al., “Data Mining Untuk Prediksi Penjualan Menggunakan Metode Simple Linear Regression,”

Teknika, vol. 13, no. 1, pp. 27–34, Jan. 2024. doi: 10.34148/teknika.v13i1.712.

[8] A. M. A. Rusdy, P. Purnawansyah, dan H. Herman, “Penerapan Metode Regresi Linear Pada Prediksi

Penawaran dan Permintaan Obat Studi Kasus Aplikasi Point Of Sales,” Buletin Sistem Informasi dan

Teknologi Islam, vol. 3, no. 2, pp. 121–126, May 2022. doi: 10.33096/busiti.v3i2.1130.

[9] S. Lestari, “Analisis Algoritma Regresi Linear Sederhana dalam Memprediksi Tingkat Penjualan Album

KPOP,” INSOLOGI: Jurnal Sains dan Teknologi, vol. 2, no. 1, pp. 199–209, Feb. 2023. doi: 10.55123/

insologi.v2i1.1692.

[10] F. H. Hamdanah dan D. Fitrianah, “Analisis Performansi Algoritma Linear Regression dengan Generalized

Linear Model untuk Prediksi Penjualan pada Usaha Mikra, Kecil, dan Menengah,” Jurnal Nasional

Pendidikan Teknik Informatika (JANAPATI), vol. 10, no. 1, p. 23, Apr. 2021. doi: 10.23887/janapati.

v10i1.31035.

[11] E. A. N. Sonjaya, D. Herwanto, dan D. N. Rinaldi, “Analisis Perbandingan Metode Moving Average dan

Linear Regression Pada Produk Pupuk Urea,” Syntax Literate : Jurnal Ilmiah Indonesia, vol. 7, no. 7,

pp. 10 265–10 276, Jul. 2022. doi: 10.36418/syntax-literate.v7i7.11556.

[12] A. T. Widiyatmoko, S. Butsianto, dan A. Nugroho, “Penerapan Machine Learning untuk Prediksi Kenaikan

Harga Beras Premium Menggunakan Algoritma Regresi Linier,” MALCOM: Indonesian Journal of Machine

Learning and Computer Science, vol. 5, no. 3, pp. 1125–1132, Aug. 2025. doi: 10.57152/malcom.v5i3.2123.

[13] E. Hulu et al., “Analisis Ramalan Volume Penjualan Semen Dengan Metode Time Series Di UD.Denis Kota

Gunungsitoli,” Jurnal Ekonomi Bisnis, Manajemen dan Akuntansi (JEBMA), vol. 4, no. 3, pp. 2047–2056,

Nov. 2024. doi: 10.47709/jebma.v4i3.4727.

[14] L. H. Hasibuan et al., “Analisis Metode Single Exponential Smoothing dan Metode Regresi Linearu untuk

Prediksi Harga Daging Ayam Ras,” Math Educa Journal, vol. 6, no. 2, pp. 120–130, Oct. 2022. doi:

10.15548/mej.v6i2.3872.

[15] B. A. Celik dan S. Celik, “Hybrid forecasting of agricultural commodity prices: Integrating machine learning,

time series, and stochastic simulation models,” Borsa Istanbul Review, vol. 25, no. 6, pp. 1440–1462, Nov.

2025. doi: 10.1016/j.bir.2025.10.004.

[16] I. Ilic et al., “Explainable boosted linear regression for time series forecasting,” Pattern Recognition, vol. 120,

p. 108 144, Dec. 2021. doi: 10.1016/j.patcog.2021.108144.

[17] N. Roustaei, “Application and interpretation of linear-regression analysis,” Medical hypothesis discovery and

innovation in ophthalmology, vol. 13, no. 3, pp. 151–159, Oct. 2024. doi: 10.51329/mehdiophthal1506.

[18] P. Ali dan A. Younas, “Understanding and interpreting regression analysis,” Evidence Based Nursing,

vol. 24, no. 4, pp. 116–118, Oct. 2021. doi: 10.1136/ebnurs-2021-103425.

[19] H. S. Al-zboon dan M. I. Y. Alharayzeh, “The Impact of Guessing on the Accuracy of Estimating Simple

Linear Regression Equation Parameters and the Ability to Predict,” International Journal of Instruction,

vol. 16, no. 2, pp. 927–944, Apr. 2023. doi: 10.29333/iji.2023.16249a.

[20] Y. H. Agustin, E. Satria, dan F. Siti Nursifa, “Prediksi Jumlah Pengunjung Pariwisata di Kabupaten

Garut Menggunakan Algoritma Regresi Linear,” Jurnal Algoritma, vol. 22, no. 1, pp. 569–581, Jun. 2025.

doi: 10.33364/algoritma/v.22-1.1807.

[21] S. M. Robeson dan C. J. Willmott, “Decomposition of the mean absolute error (MAE) into systematic

and unsystematic components,” PLOS ONE, vol. 18, no. 2, F. Zama, Ed., e0279774, Feb. 2023. doi:

10.1371/journal.pone.0279774.

[22] K. T. Kizgin et al., “Machine learning-based sales forecasting during crises: Evidence from a Turkish

women’s clothing retailer,” Science Progress, vol. 108, no. 1, Jan. 2025. doi: 10.1177/00368504241307719.

[23] Siti Maisaroh dan Ryci Rahmatil Fiska, “Implementasi Algoritma Regresi Linier Berganda untuk Prediksi

Penjualan di D’Kopikap,” Jurnal Teknik Informatika dan Teknologi Informasi, vol. 5, no. 1, pp. 114–131,

May 2025. doi: 10.55606/jutiti.v5i1.5149.

[24] T. Iida, “Identifying causes of errors between two wave-related data using performance metrics,” Applied

Ocean Research, vol. 148, p. 104 024, Jul. 2024. doi: 10.1016/j.apor.2024.104024.

[25] A. T. Nurani, A. Setiawan, dan B. Susanto, “Perbandingan Kinerja Regresi Decision Tree dan Regresi

Linear Berganda untuk Prediksi BMI pada Dataset Asthma,” Jurnal Sains dan Edukasi Sains, vol. 6,

no. 1, pp. 34–43, May 2023. doi: 10.24246/juses.v6i1p34-43.

Published

2025-12-30

Issue

Section

Articles

How to Cite

Abdilah, H. F., & Effendi, D. (2025). Sales Forecasting of Oyster Mushrooms Using Simple LinearRegression: A Case Study of Tugumukti SMEs. Jurnal Bumigora Information Technology (BITe), 7(2), 109-120. https://doi.org/10.30812/bite.v7i2.5572