Naive Bayes Algorithm Implementation for Hair LossPrediction

Authors

  • Ani Yoraeni Universitas Nusa Mandiri, Jakarta, Indonesia
  • Syifa Nur Rakhmah Universitas Bina Sarana Informatika, Jakarta, Indonesia

DOI:

https://doi.org/10.30812/bite.v7i1.5201

Keywords:

Hair Loss, Machine Learning Methods, Naive Bayes, Prediction

Abstract

 Background: Hair loss is a common problem that can affect a person’s self-confidence. Early prediction of the risk is important to help with more appropriate treatment.
Objective: This study aims to apply the Na¨ıve Bayes algorithm to predict hair loss based on personal data and clinical factors such as age, gender, stress levels, hormones, and family history.
Methods: The Na¨ıve Bayes method was chosen because it efficiently handles categorical data. The data used in this study were obtained from a public dataset available on the Kaggle platform, which contains individual information about the risk of hair loss.
Result: The developed prediction model can classify risks based on various causal factors, but its performance is still low with an accuracy of 55.5%, AUC 0.593, and MCC 0.113.
Conclusion: These results indicate that the model is unreliable for practical applications. The implication is that this system can be the basis for further development with more complex algorithms, the addition of clinical features, and stronger validation so that it can be applied effectively in medical contexts and personal consultations. 

Downloads

Download data is not yet available.

References

[1] B. Harris, “Kerontokan dan Kebotakan pada Rambut,” Ibnu Sina: Jurnal Kedokteran dan Kesehatan- Fakultas Kedokteran Universitas Islam Sumatera Utara, vol. 20, no. 2, pp. 159–168, Jul. 2021. doi: 10.30743/ibnusina.v20i2.219.

[2] N. Gokce et al., “An overview of the genetic aspects of hair loss and its connection with nutrition,” Journal of Preventive Medicine and Hygiene, vol. Vol. 63 No. 2S3, E228 Pages, Oct. 2022. doi: 10.15167/2421-4248/JPMH2022.63.2S3.2765.

[3] S. Sayyad dan F. Sayyad, “Artificial neural networks algorithms for prediction of human hair loss related autoimmune disorder problem,” Journal of Autonomous Intelligence, vol. 6, no. 2, p. 606, Jul. 2023. doi:10.32629/jai.v6i2.606.

[4] G. S. T. Siregar dan S. Sipayung, “Selecting a Major Based on Talent and Interest Using the Naive Bayes Algorithm in Python,” SEMICOLON: Computer Science Journal, vol. 1, no. 1, pp. 1–7, Dec. 2024.

[5] F. Khatun et al., “Survey-based Machine learning approaches to diagnosis of hair fall disorder in Bangladeshi Community,” in 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India: IEEE, Oct. 2022, pp. 1–6. doi: 10.1109/ICCCNT54827.2022.9984226.

[6] Rayuwati, Husna Gemasih, dan Irma Nizar, “Implementasi Algoritma Naive Bayes untuk Memprediksi Tingkat Penyebaran COVID,” JURAL RISET RUMPUN ILMU TEKNIK, vol. 1, no. 1, pp. 38–46, Apr.2022. doi: 10.55606/jurritek.v1i1.127.

[7] D.-R. Jung et al., “Comparative analysis of scalp and gut microbiome in androgenetic alopecia: A Korean cross-sectional study,” Frontiers in Microbiology, vol. 13, p. 1 076 242, Dec. 2022. doi: 10.3389/fmicb.2022.1076242.

[8] L. Hermawanti, “Penerapan Algoritma Na¨ıve Bayes Untuk Deteksi Bakteri E-coli,” Tatal, vol. 8, no. 1, p. 221 583, Sep. 2012.

[9] R. Supriyadi et al., “Penerapan Algoritma Naive Bayes Dan Support Vector Machine dalam Memprediksi Autisme,” Swabumi, vol. 10, no. 1, pp. 55–59, Mar. 2022. doi: 10.31294/swabumi.v10i1.12294.

[10] A. Timotius dan I. Fenriana, “Perancangan Aplikasi Prediksi Penyakit Jantung Menggunakan Metode Na¨ıve Bayes,” ALGOR, vol. 5, no. 2, pp. 54–66, Mar. 2024. doi: 10.31253/algor.v5i2.2360.

[11] A. Abdussomad, I. Kurniawan, dan A. Wibowo, “Prediksi Kemungkinan Penyakit Liver menggunakan Algoritma Klasifikasi Naive Bayes,” Technologia : Jurnal Ilmiah, vol. 15, no. 3, p. 506, Jul. 2024. doi:10.31602/tji.v15i3.15288.

[12] E. Karuna dan J. Petrus, “Penentuan Tingkat Kerontokan Rambut Kepala Pria dengan Metode Fuzzy Inference System Sugeno,” Jurnal Algoritme, vol. 3, no. 2, Apr. 2023. doi: 10.35957/algoritme.v3i2.4204.

[13] I. Ningrumsari Mulyanan, M. Yusril Helmi Setyawan, dan W. Isti Rahayu, “Penerapan Metode Na¨ıve Bayes untuk Merekomendasikan Pekerjaan yang Sesuai terhadap Fresh Graduate,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 5, pp. 3453–3460, Jan. 2024. doi: 10.36040/jati.v7i5.7155.

[14] D. R. Suwari, M. Nafisah, dan A. Hendrawan, “Penerapan Metode Crisp-Dm Dengan Algoritma K-Means Clustering Untuk Analisa Kemiskinan Dan Konsumsi Per Kapita Di Jawa Tengah Selama Pandemi,” in Seminar Nasional Inovasi Dan Tren Teknologi Informasi (SINATTI) 2024, Semarang: Universitas Semarang, Jun. 2024, pp. 1–10.

[15] A. W. Putra et al., “Perbandingan Klasifikasi antara Naives Bayes dan Decision Tree dalam Prediksi Penyakit Diabetes Tahap Awal,” Jurnal Ilmu Komputer, vol. 17, no. 1, p. 9, Apr. 2024. doi: 10.24843/JIK.2024.v17.i01.p06.

[16] N. Lawrance, G. Petrides, dan M.-A. Guerry, “Predicting employee absenteeism for cost effective interventions,” Decision Support Systems, vol. 147, p. 113 539, Aug. 2021. doi: 10.1016/j.dss.2021.113539.

[17] R. Rahmawati, “Algoritma Na¨ıve Bayes Untuk Melihat Faktor-faktor Yang Mempengaruhi Kulit Terbakar,”Jurnal Sistem Informasi, vol. 3, no. 2, pp. 197–202, 2014.

Downloads

Published

2025-06-30

Issue

Section

Articles

How to Cite

Yoraeni, A., & Rakhmah, S. N. (2025). Naive Bayes Algorithm Implementation for Hair LossPrediction. Jurnal Bumigora Information Technology (BITe), 7(1), 63-70. https://doi.org/10.30812/bite.v7i1.5201