
Jurnal Bumigora Information Technology (BITe)
Vol. 7, No. 1, June 2025, Hal. 39∼50
E-ISSN: 2685-4066, DOI: 10.30812/bite/v7i1.5131 ■ 39

Enhancing Vehicle Communication on Highways through
Modification of the On-Demand Distance Vector Routing

Protocol Using Learning Automata Approach

Bryan Jonathan Hutapea1*, Ketut Bayu Yogha Bintoro1, Helna Wardhana2

1Universitas Trilogi, Jakarta, Indonesia
2Universitas Bumigora, Mataram, Indonesia

Article Info:

Received: 28 May 2025, Revised: 31 May 2025, Accepted: 17 June 2025

Abstract-

Background: Vehicle-to-vehicle communication has become crucial in developing intelligent transportation systems.

However, conventional routing protocols face limitations in coping with dense and dynamic traffic conditions.

Objective: This study aims to improve communication efficiency between vehicles by modifying an on-demand routing

protocol using a learning automata approach.

Methods: This study employed a simulation method with traffic modeling using traffic modeling software and network

simulation tools, based on data from highways in the Soekarno-Hatta International Airport area.

Result: The results of this study show that the developed protocol increases the packet delivery ratio to 87.7% and reduces

latency by 6.5%.

Conclusion: This study concludes that learning automata in vehicle routing enhance communication reliability and

support implementing a more adaptive and efficient transportation system.
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1. INTRODUCTION

Vehicle-to-Vehicle (V2V) communication within Vehicular Ad-Hoc Networks (VANETs) is a cornerstone

for enhancing safety and efficiency in intelligent transportation systems [1]. One widely adopted routing protocol

in VANETs is the Ad hoc On-Demand Distance Vector (AODV) protocol [2], recognized for its adaptability to

dynamic network topologies. However, AODV faces significant challenges in high-density traffic scenarios [3],

particularly on highways where the rapid mobility of vehicles and high traffic density often lead to increased

latency [4], reduced packet delivery ratios [5], and elevated jitter [6]. As the adoption of connected and autonomous

vehicles grows, the limitations of existing protocols like AODV become more critical. These limitations can affect

the reliability of essential applications such as collision avoidance [7], [8] and emergency warning systems [9],

[10]. The situation impacts the reliability of these systems. High mobility [11] and frequent topology changes in

VANETs further increase routing overhead and delays, degrading communication performance [12]. We tackle

these challenges by developing efficient communication systems for next-generation intelligent transportation.

This study highlights the urgent need to explore new improvements or alternative routing protocols to optimize

V2V communication. This study addresses these limitations by enhancing AODV using Learning Automata,

resulting in the Learning Automata-based AODV (LA-AODV) protocol [13]. The proposed protocol leverages
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real-time traffic pattern learning to improve route selection and reduce common issues such as delay and packet

loss inherent in standard AODV. By integrating adaptive learning mechanisms, LA-AODV is expected to perform

more efficiently under dynamic traffic conditions, particularly in scenarios with high mobility and density [14].

The study employs the Soekarno-Hatta International Airport area as a testbed for simulation, given its

high traffic density and dynamic vehicular movements, making it an ideal representation of real-world highway

conditions. This research utilizes the Simulation of Urban Mobility (SUMO) [15] and Network Simulator 3 (NS-3)

tools to create realistic traffic scenarios and assess the protocol’s performance [16]. The Methodology provides

valuable insights into Vehicle-to-Vehicle (V2V) communication efficiency in dense vehicular environments, an

area overlooked in previous studies. By addressing the challenges of the AODV protocol in dynamic traffic,

this research advances the field of VANETs. It promotes optimism for future V2V communication solutions.

Due to their dynamic topologies, routing in VANETs differs from traditional ad-hoc networks. While Mobile

Ad-hoc Networks (MANETs) protocols have been tested in VANETs, reducing message transmission delays

remains a challenge [17], [18]. The main focus of VANETs is to establish and maintain optimal communication

paths using various specialized routing protocols. One innovative approach piques interest is the combination

of Learning Automata (LA) with the AODV routing protocol. This unique blend is designed to enhance V2V

communication in changing traffic conditions. The LA-AODV [19] protocol optimizes relay node selection,

improving V2V communication efficiency. It uses real-time data on vehicle positions, speeds, and accelerations

to predict and select more responsive relay node clusters. This method seeks to enhance Quality of Service

(QoS) by evaluating metrics like Packet Delivery Ratio (PDR), throughput, delay, and jitter. Optimizing relay

nodes reduces information overload and aids in accident prevention. NS-3 simulations were used to compare the

effectiveness of LA-AODV with the standard AODV protocol [20].

Routing algorithms such as AOMDV [12], DSDV [21], and DDSLA-RPL [22] were tested in highway traffic

scenarios, measuring performance through PDR, throughput, Network Routing Load [23], and End-to-End (E2E)

delay. Results showed that AOMDV outperformed AODV and DSDV in throughput and NRL, while AODV

excelled in PDR. DSDV had the highest E2E delay. A gap has not been adequately addressed by previous

studies, namely the absence of an adaptive routing strategy that integrates learning mechanisms to predict

traffic behavior and adjust routes dynamically based on real-time vehicular movement. Most prior studies have

focused on static performance comparisons without incorporating intelligent systems capable of responding to

the highly dynamic nature of highway traffic. The novelty of this study lies in implementing a learning-based

adaptation within the routing protocol, which allows each vehicle to estimate its future location based on current

speed and acceleration, and to communicate this predictive information with surrounding vehicles. This method

enhances route selection by identifying more stable relay nodes, thus improving communication reliability and

reducing transmission delays.

The practical implications of these findings are significant, as AOMDV’s reactive and multipath design not

only improves bandwidth and reduces delay but also enhances security by utilizing multiple paths for consistent

communication [24]. Lastly, reactive and proactive routing protocols were compared under various traffic patterns,

assessing metrics like message redundancy, packet delivery, packet loss, throughput, E2E delay, and jitter. The

comparison was conducted with thoroughness and attention to detail, aiming to highlight the differences between

reactive and proactive protocols in dynamic V2V scenarios. This research aims to improve the effectiveness

of communication between vehicles in dynamic highway conditions by modifying existing routing protocols

through learning-based mechanisms. This study contributes to the advancement of intelligent transportation

technologies by introducing a new model for route optimization that performs better in environments with high

vehicle density. The proposed approach supports the development of more reliable and responsive communication

systems for autonomous transportation and traffic safety management.
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2. RESEARCH METHOD

The study introduces LA-AODV, a modified AODV protocol that enhances vehicle-to-vehicle commu-

nication in highway traffic. It uses data from Soekarno-Hatta Airport, SUMO for traffic modeling, and NS-3

for evaluation. LA-AODV aims to improve the original AODV protocol in dynamic, high-traffic situations.

Its performance was evaluated based on packet delivery ratio, throughput, delay, and jitter in three scenarios:

free flow, steady flow, and traffic congestion. The goal was to enhance packet delivery and reduce delays and

jitter, which are critical for implementing autonomous vehicles and intelligent transportation systems (ITS) in

real-world settings. As depicted in Figure 1, the research framework has practical implications for the future of

transportation engineering and intelligent systems.

Figure 1. Research methodology

As shown in Figure 1, we used Ubuntu 20.04 for our simulations. Gathering data is essential, so we

generated XML trace files through NS3 to capture vehicle connectivity. SUMO-GUI was employed to create

realistic traffic scenarios with accurate passenger-vehicle interactions. We efficiently utilized NS3 version 3.35 for

network communication, integrating it seamlessly with SUMO to combine traffic modeling and communication

simulations. Figure 2 displays the LA-AODV flowchart diagram.

Figure 2. The LA-AODV flowchart diagram
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The comparison utilizes a modified version of the standard AODV protocol, LA-AODV. Figure 2 illustrates

the step-by-step process for implementing this modification. The source node in the network can utilize GPS

services to determine the location of the destination node and the positions of nearby nodes. To ensure that each

node in the network receives regular updates about the real-time locations of vehicles, every vehicle independently

predicts its future location using computational resources and shares this forecast with nearby nodes to assess

whether the node can serve as a relay. The LA-AODV protocol facilitates precise path estimation and route

selection by leveraging data from the vehicle communication network. This process is carried out by using

Equation (1) to estimate the relative positions of vehicles and compute their actual locations based on speed

and acceleration data.

SUBproxx = Σx≤R
x=1 certainproxζ , certainproxθ, lx (1)

he LA-AODV protocol employs Equation (1) to manage vehicle routing within a communication network.

It considers various factors such as vehicle proximity, the count of vehicles within transmission range, vehicle

speed, and the passage of time. Two additional equations are used to evaluate vehicle proximity and forecast

future positions to enhance road safety. These are by the principles outlined in (2) and (3).

sevproxζ = Σx≤R, e≤X
x=1,e=1 (certainproxζ + (lv . e) +

((
1

2
(∆l)

)
∗ 2

)
(2)

sevproxθ = Σx≤R, e≤X
x=1,e=1 (certainproxθ + (lv . e) +

((
1

2
(∆l)

)
∗ 2

)
(3)

At the beginning of the iteration, the changes in the horizontal position ∆xζ and vertical position ∆xθ are

calculated based on the difference between the vehicle’s position at prediction time e (le) and its position at the

previous iteration le−1, assuming that the initial value of le−1 is zero. The prediction time, denoted as e, takes

values of 1, 2, 3, and so on, and must be less than the maximum number of iterations represented by X. The

simulation involves a vehicle v, with R representing the total number of vehicles within the transmission range.

The variable le refers to the vehicle’s speed at prediction time e. Two formulas are employed to estimate a vehicle’s

location accurately. Equation (2) calculates the horizontal position (ζ) using factors such as speed, distance, and

time. Equation (3) determines the vertical position (θ), considering vehicle status, speed, surrounding vehicles,

and simulation time. Both equations are essential for effective V2V communication. Time (s) and length (X)

limitations help ensure the accuracy and timeliness of the predictions. The LA-AODV protocol enhances vehicle

communication networks by forecasting vehicle positions and updating the routing table. This process boosts

the efficiency of V2V communication in dynamic traffic environments.

sevintζθ =
√
(|∆sevproxζ

−∆sevproxθ
|) (4)

Where:

∆sevproxζ
=

(
sevproxζ+1

− sevproxζ

)
(5)

∆sevθ =
(
sevproxθ+1

− sevproxθ

)
(6)

Equation (4) determines the vehicle’s position (sevintζθ) by accounting for changes in both the horizontal

(ζ) and vertical (θ) coordinates. This calculation depends on the values of ∆sevproxζ
and ∆sevproxθ

, which are

derived from Equations (5), and (6). To estimate the change in the horizontal position, Equation (4), subtracts

the predicted position at time e + 1 (sevprox ζ+1
) from the predicted position at time (s) sevprox ζ

. Likewise,

the equation computes the variation in the vertical position by subtracting sevprox ζ+1
from sevprox θ+1

. The

Journal Homepage: https://journal.universitasbumigora.ac.id/index.php/bite

https://journal.universitasbumigora.ac.id/index.php/bite


■ 43 Jurnal Bumigora Information Technology (BITe), Vol. 7, No. 1, June 2025

variable sevintζθ predicts the locations of neighboring vehicles across a given simulation period by incorporating

the expected horizontal and vertical positions at two distinct time points. Finally, (7) compares the anticipated

vehicle movement along the horizontal (ζ) and vertical (θ) axes during two predicted time intervals.

sevintζθ = min

(
x≤R, e≤X
x=1, e=1

√∣∣sevproxζ+1 − sevproxζ
∣∣2 − ∣∣sevproxθ+1 − sevproxθ

∣∣2) (7)

Equation (7) applies Euclidean distance and dynamic coordinates to assess and compare vehicle positions

to identify the optimal route. The ideal routing conditions guarantee efficient vehicle communication. Equation

(8) selects the relay node by computing the communication stability index between nodes m and n.

com stab idxtu =

∣∣∣∣(sevintζθ
Maxrad

)∣∣∣∣ (8)

Where:

com stab idxtu =

{(
stab, if ≤ 1

unstab, if > 1

)}
(9)

Equation (8) calculates the communication stability index between nodes m and n. It does so by dividing

the predicted position of neighboring vehicles by the maximum communication range and verifying if the result

is less than or equal to 1. If the condition holds, it indicates a stable communication environment. Additionally,

the distances between node m and nearby vehicles are measured over time, with weights assigned based on speed

and position, as described in the Equation (9) formula.

TWRm = Σm→R
m=1 (gs ∗ (|sn − sd|)) + (ga ∗ (|an − ad|)) + (gd ∗ (|dn − dd|)) + (gq ∗ comqtym) (10)

Where:

0.6 ≥ TWR = 1, Optimal, and TWR ≤ 0.59, suboptimal.

The Total Weight Route (TWR), a measure for assessing the quality of the standard route, is calculated

using the LA-AODV protocol (10). TWR considers various factors such as distance traveled, speed, acceleration,

and communication quality. Following the formula in (11), each of these factors is assigned a weight of one.

Wsum = gs + ga + gd + gq = 1 (11)

pe+1 =

{
Q (e) , pselected = 1, reward

Q (e) ,+1, pignore = 0, penalize

}
(12)

Equation (11) combines various factors with assigned weights to provide a comprehensive evaluation

for route selection in the LA-AODV protocol. This assessment is based on speed, distance, acceleration, and

communication quality. The TWR uses the LRI algorithm as the learning rate to assess route quality. Equation

(12) describes how the LRI algorithm adjusts its learning process based on past experiences.

TWRupdt = Σm≤R, e≤X
m=1,e=1 (TWRm + p) (13)

In Equation (13), the value is integrated into the latest TWR to update its value, allowing continuous

refinement and adaptation for different vehicles or nodes. This dynamic method enhances routing efficiency

and improves vehicle communication during the simulation. Table 1 shows the V2V Communication simulation

setup.
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Table 1. Kinerja sistem

Parameters Value(s)

Total Number of actual Nodes (Vehicles) Random, based on the Poisson distribution

Simulation Time (s) 300-700 seconds

Traffic Scenario • Smooth Flow (prob 0.55)
• Steady Flow (prob 0.33)

• Heavy Traffic (prob 0.1)

Route Selection Random Route Selection

Node Speed Random Speed

Initial node position Random position

Node Movement All moving nodes

Data Packets Configuration Real-time traffic data packets from the Soekarno-Hatta
International Airport traffic maps.

Type of Protocol AODV [9] and LAAODV

Type of Traffic Urban and Highway Traffic

Performance Matrix (QOS) Flod ID, PDR, PLR, Throughput, end-to-end delay

LAAODV parameter setup fs : 0.4; fa : 0.3; fd : 0.3; α: 0.2; Reward : 1.

Table 1 categorizes real-world vehicle simulations into three traffic scenarios: smooth flow, steady flow,

and heavy traffic. To evaluate the LAAODV protocol, we used metrics such as Packet Delivery Ratio, delay,

throughput, packet loss, and jitter. Vehicle communication efficiency relies on speed, acceleration, and distance.

Equation (14) provides the Poisson distribution formula to determine the probability of a specific number of

vehicles in time-based simulations.

J (H = O) =
e−λ.λ−l

l!
(14)

The Poisson distribution (13) estimates the number of vehicles passing a point based on the average event

rate (λ) and Euler’s number (approximately 2.71). Soekarno-Hatta International Airport in Jakarta, a pivotal

transportation hub connecting routes like the Jakarta-Merak toll road and the Jakarta Outer Ring Road (JORR),

plays a crucial role in our traffic analysis. Its access roads handle various vehicles, but a mix of private cars,

buses, trucks, motorcycles, and construction activities leads to traffic congestion.

PacketLossRatio =
LostPackets

SentPackets
(15)

The Packet Loss Ratio (PLR) measures the proportion of successfully received packets to the total sent

within a specific time frame. A low PLR is essential for reliable vehicular communication, as a high PLR

can cause safety hazards, increased congestion, and lower driver confidence. Another key metric is the Packet

Delivery Ratio (PDR), calculated by dividing the total transmitted packets by those successfully received. The

PDR is important for evaluating packet delivery effectiveness in the communication network.

PacketDeliveryRatio =
ReceivedPackets

SentPackets
(16)

Equation (16) calculates the Packet Delivery Ratio (PDR) by comparing the amount of data received

by a destination node (ReceivedPackets) to the data sent by the source node (SentPackets). Ideally, the data

delivered and received should be the same. A higher PDR value indicates better network performance and a

higher success rate for the routing protocol.

AvgThroughput =
TotalPacketsSent

TotalT ime
(17)

Journal Homepage: https://journal.universitasbumigora.ac.id/index.php/bite

https://journal.universitasbumigora.ac.id/index.php/bite


■ 45 Jurnal Bumigora Information Technology (BITe), Vol. 7, No. 1, June 2025

Equation (17) provides a simple formula for calculating Average Throughput, which measures the network’s

performance by dividing the total number of packets successfully received by the destination node within a

specific time interval by the duration of that interval. This metric offers a tangible measure of the network’s

data transmission efficiency.

delayi =

∑n
i=0 (Trecv [i]− Tsent [i])

TotalPackets
(18)

Equation (18) computes the average delay by averaging the differences between the time a packet is sent

and the time it is received. End-to-end jitter delay, described by Equation (19), measures the delay variation

caused by data processing errors and packet reordering.

jitter =
V ariatonDelay

NumPackets− 1
(19)

Equation (19) calculates jitter by determining the variance in delay times, dividing the difference between

the maximum and minimum delay values by the number of delay samples minus one (NumPackets - 1). Jitter

helps assess how consistently data is transmitted across the network, with lower jitter indicating more stable

and reliable communication.

3. RESULT AND DISCUSSION

The findings of this study are that the proposed LA-AODV routing protocol significantly enhances

V2V communication performance in dense and dynamic traffic scenarios. Compared to the conventional AODV

protocol, LA-AODV achieved a higher packet delivery ratio of up to 87.7% and demonstrated a 6.5% reduction

in end-to-end latency. These improvements were particularly evident under traffic congestion conditions, where

LA-AODV maintained more stable throughput and exhibited lower jitter, highlighting its robustness in real-world

vehicular communication environments.

Previous studies in adaptive routing in vehicular networks support these findings. Bintoro and Priyambodo

[13] reported similar improvements when applying Learning Automata to optimize AODV-based routing, especially

in simulations involving fluctuating vehicle density and mobility. Their work demonstrated that adaptive learning

mechanisms enhance protocol responsiveness to topological changes. In line with this, Anantapur and Patil [5]

confirmed that learning-based modifications to AODV reduced packet loss and improved delay performance in

MANETs. Additionally, Kushwaha et al. [24] provided empirical evidence that multi-path routing strategies

such as AOMDV consistently outperform standard AODV regarding packet delivery and throughput, reinforcing

the relevance of protocol enhancement through intelligent adaptation.

The number of nodes supporting free movement rises from 1,052 at 300 to 2,134 at 700 nodes, indicating

network capacity limits. Growth slows between 600 and 700 nodes, suggesting reduced capacity for free-flow

traffic. Figure 3 shows the distribution of nodes in Free Flow, Steady Flow, and Traffic Jam as the total nodes

increases from 300 to 700. Figure 3 shows that nodes in the Steady Flow category increase from 1,351 to 2,843,

causing higher loads and reduced efficiency. The Traffic Jam category rises sharply from 3,067 to 6,797 nodes,

indicating severe congestion above 500 nodes. This data has significant implications, highlighting the urgent

need to address the network’s limited ability to handle high-density traffic. Figure 4 presents average vehicle

speeds across three categories: Free Flow, Steady Flow, and Traffic Jam, as the number of nodes increases from

300 to 700. In Free Flow, speeds stay stable at 11.15 to 11.52 m/s. In Steady Flow, speeds drop from 12.16 m/s

to 10.84 m/s, then rise slightly to 11 m/s at 700 nodes. The Traffic Jam category sees a significant speed decline

from 11.64 m/s to 9.78 m/s, emphasizing the impact of congestion. Overall, Traffic Jam conditions are most

affected by increased density, while Free Flow remains more stable. Figure 5 compares time loss.
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Figure 3. Vehicle density during all simulation
scenarios

Figure 4. The average vehicle speed in the
simulation environment

Figure 5 illustrates the increase in ”time loss” as node counts rise from 300 to 700 across three categories:

Free Flow, Steady Flow, and Traffic Jam. In Free Flow, time loss grows from 38.82 seconds at 300 nodes to

85.51 seconds at 700 nodes, indicating a slight efficiency decline. Steady Flow sees a more significant rise to 91.3

seconds at 700 nodes, while Traffic Jam escalates from 39.64 seconds to 108.72 seconds. These results emphasize

the pressing need to tackle congestion issues. Figure 6 reiterates the key points by highlighting congestion levels

at node counts from 300 to 700. The Free Flow category remains congestion-free, while Steady Flow sees eight

incidents at 700 nodes. In the Traffic Jam category, congestion starts at 500 nodes (one incident) and escalates

to 43 incidents at 700 nodes, demonstrating that higher node counts significantly raise congestion risk. This

reiteration ensures a clear understanding of the data and its implications.

Figure 5. Time loss across different time intervals
for three traffic density levels

Figure 6. Highlights rising congestion with
increased node count, particularly in steady flow

and traffic jam categories

Figure 7 depicts travel durations as node counts increase from 300 to 600. In the Free Flow category,

times rise from 160.26 to 278.47 seconds, while the Steady Flow category increases from 161.76 to 271.32 seconds.

The Traffic Jam category, however, shows lower durations, ranging from 148.12 to 249.69 seconds, indicating

more time spent stationary in congestion. LA-AODV outperforms AODV in throughput. At 300 nodes, it

achieves 29.81 Kbps versus AODV’s 26.13 Kbps. LA-AODV ranges from 45.81 Kbps to 68.16 Kbps in more

extensive networks, while AODV ranges from 38.93 Kbps to 43.76 Kbps, showing LA-AODV’s better efficiency

in denser networks.
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Figure 7. Highlights rising congestion with
increased node count

Figure 8. Displays higher waiting times with
increased node counts, particularly in traffic jams

Figure 9 presents emergency braking incidents by node count. In free flow, incidents decrease from 3 to

1. In steady flow, they rise from 1 to 4. In traffic jams, incidents increase significantly from 1 to 8, indicating

higher braking risk. When node counts exceed 500, traffic jams lead to lower speeds and longer travel times,

increasing waiting times and emergency braking incidents, elevating collision risks. However, implementing

optimized routing protocols, such as AODV or LA-AODV, can significantly enhance traffic management and

safety, providing potential solutions to these challenges. Figure 10 illustrates that LA-AODV, compared to

AODV, marginally reduces the packet loss ratio. With 300 nodes, LA-AODV shows a ratio of 73.67%, while

AODV shows 74.33%. As the number of nodes increases from 400 to 700, LA-AODV maintains a stable packet

loss ratio of 79% to 87.7%, whereas AODV fluctuates between 79% and 88.7%. Overall, LA-AODV’s effectiveness

in minimizing packet loss under higher traffic conditions is evident, making it a superior choice.

Figure 9. It lists emergency braking incidents
rising with node count, particularly in traffic jams.

Figure 10. Comparison of packet loss ratio
between routing protocols LA-AODV and AODV

LA-AODV consistently outperforms AODV in terms of packet delivery ratio. At 300 nodes, LA-AODV

achieves a delivery ratio of 25.33%, slightly higher than AODV’s 24.67% (see Figure 11). Across the entire range

of node counts (300 to 700), LA-AODV maintains a higher delivery ratio (79% to 87.7%) compared to AODV

(79% to 88.7%). This demonstrates that LA-AODV ensures more consistent and efficient packet delivery across

varying network conditions. LA-AODV outperforms AODV in throughput, as shown in Figure 12. At 300 nodes,

LA-AODV achieves 29.81 Kbps, slightly above AODV’s 26.13 Kbps. In more extensive networks (400 to 700

nodes), LA-AODV ranges from 45.81 Kbps to 68.16 Kbps, compared to AODV’s 38.93 Kbps to 43.76 Kbps.

These results highlight LA-AODV’s superior bandwidth efficiency in denser networks.
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Figure 11. Comparison of packet delivery ratio
between routing protocols LA-AODV and AODV

Figure 12. Comparison of throughput between
routing protocols LA-AODV and AODV

Figure 13 shows that AODV generally has higher end-to-end delays than LA-AODV. At 300 nodes, AODV

experiences a delay of 129 milliseconds compared to LA-AODV’s 132 milliseconds. In denser networks of 400 to

700 nodes, AODV delays range from 144 to 221 milliseconds, while LA-AODV maintains a range of 132 to 242

milliseconds. Overall, LA-AODV proves more effective at minimizing delays, reflecting better communication

efficiency. LA-AODV has a lower jitter delay than AODV, achieving 91 ms at 300 nodes compared to 67 ms

at 300 nodes, indicating better communication stability. The analysis examined three traffic scenarios: free,

steady, and traffic jam. In free flow, with smooth traffic and low node density, LA-AODV performs slightly

better. During steady flow, it achieves higher throughput and lower delays. In traffic jams characterized by

high node density, LA-AODV shows improved delivery ratios, better throughput, and reduced jitter. Overall,

LA-AODV is more efficient for communication in densely populated and congested traffic conditions, suggesting

that protocol modifications greatly enhance performance in challenging situations.

Figure 13. Comparison of throughput between
routing protocols LA-AODV and AODV

Figure 14. Comparison of end-to-end delay
between routing protocols LA-AODV and AODV

4. CONCLUSION

The simulation evaluated V2V communication on highways across three traffic scenarios: free flow, steady

flow, and traffic jams, using the LA-AODV protocol. LA-AODV outperformed AODV in terms of throughput and

packet delivery and demonstrated its efficiency by reducing end-to-end delay. It achieved a throughput of 29.81

Kbps in free-flow conditions, compared to AODV’s 26.13 Kbps. Both had similar packet loss rates: LA-AODV

at 25.33% and AODV at 24.67%. Under steady flow, LA-AODV improved its packet delivery ratio to 86.7%

and throughput to 64.88 Kbps, while AODV reached 79.0% and 83.05 Kbps. LA-AODV had a delivery ratio of

87.7% and throughput of 68.16 Kbps during traffic jams, whereas AODV had 82.7% and 43.76 Kbps. LA-AODV
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reduced end-to-end delay, averaging 2.23E+11 ns compared to AODV’s 2.28E+11 ns, further demonstrating its

efficiency. LA-AODV demonstrated superior performance in congested traffic scenarios, with better throughput,

lower packet loss, and improved delay management. Future research should focus on optimizing the LA-AODV

protocol for high-density traffic and V2X (Vehicle-to-Everything) networks. The promising areas of artificial

intelligence for vehicle movement prediction and dynamic route management, as well as the use of real-time

vehicle sensor data for adaptive routing, offer hope for the future of V2V communication.
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