

BIOCITY JOURNAL OF PHARMACY BIOSCIENCE AND CLINICAL COMMUNITY

Artikel Riset

Uji Kualitatif Kandungan Senyawa Sianida pada Tanaman dengan Metode Pikrat

Qualitative Test of Cyanide Compound Content in Plants using Picrate Method

Ayudia Cipta Khairani*¹, Mia Ariasti¹, Lalu Sanik Wahyu Fadil Amrulloh², Lalu Busyairi Muhsin¹, Ruprika Dwi Martayuni¹

¹Program Studi Farmasi, Fakultas Kesehatan, Universitas Bumigora, Mataram, 83127, Indonesia
²Program Studi Farmasi, Fakultas Kesehatan, Universitas Nahdlatul Ulama, Mataram, 83127, Indonesia

Informasi Artikel

Riwayat Artikel:

Received: 25 Maret 2025 Revised: 21 Oktober 2025 Accepted: 24 Oktober 2025

Keywords:

Cyanide; Picrate paper; Plant; Qualitative.

ABSTRACT

Indonesian people have traditionally utilized various local plants as alternative food sources. These plants are widely available and have considerable nutritional value; however, some of them are known to contain toxic compounds such as cyanide (HCN), which can be harmful to human health if not properly processed. Therefore, this study aimed to examine the presence of cyanide compounds in several of these commonly consumed plants. The research was conducted using a qualitative test based on the picrate method. The samples tested included cassava, cassava leaves, bamboo shoots, gadung tubers, and taro tubers. The findings indicated that all tested samples showed positive results for the presence of cyanide, as evidenced by the observed color change from yellow to reddish-brown. In conclusion, all five types of plant samples tested contained cyanide, emphasizing the importance of proper processing techniques to reduce toxicity levels before consumption by the public.

Kata Kunci:

Cyanide; Picrate paper; Plant; Qualitative.

ABSTRAK

Masyarakat Indonesia secara turun-temurun memanfaatkan berbagai jenis tumbuhan lokal sebagai sumber pangan alternatif. Tumbuhan tersebut mudah diperoleh dan memiliki nilai gizi yang cukup tinggi, namun sebagian di antaranya diketahui mengandung senyawa beracun seperti sianida (HCN) yang dapat membahayakan kesehatan apabila tidak diolah dengan benar. Oleh karena itu, penelitian ini bertujuan untuk menguji adanya kandungan senyawa sianida pada beberapa bahan pangan tersebut. Penelitian dilakukan dengan uji kualitatif menggunakan metode pikrat. Sampel yang digunakan yaitu singkong, daun singkong, rebung bambu, umbi gadung, dan talas. Hasil penelitian menunjukkan bahwa seluruh sampel yang diuji memberikan hasil positif terhadap keberadaan senyawa sianida, ditandai dengan perubahan warna kuning menjadi merah bata. Kesimpulannya, kelima jenis bahan pangan yang diuji positif mengandung sianida, sehingga diperlukan proses pengolahan yang tepat untuk mengurangi kadar racun sebelum dikonsumsi oleh masyarakat.

*Ayudia Cipta Khairani:

Email: ayudia@universitasbumigora.ac.id

DOI: 10.30812/biocity.v4i1.5047

Cara Sitasi :

Khairani,Ayudia Cipta, Ariasti, Mia, Amrulloh, Lalu Sanik Wahyu Fadil, Muhsin, Lalu Busyairi, Martayuni, Ruprika Dwi. 2025. Uji Kualitatif Kandungan Senyawa Sianida pada Tanaman dengan Metode Pikrat. Hak Cipta ©2025 Penulis, Dipublikasikan oleh Jurnal BIOCITY Journal of Pharmacy Bioscience and Clinical Community. 4(1): Page 27-32

A. PENDAHULUAN

Indonesia merupakan negara yang kaya akan keanekaragaman hayati. Tanah air ini dipenuhi dengan berbagai jenis tanaman yang memiliki potensi besar sebagai sumber bahan pangan. Saat ini, beras masih menjadi makanan pokok utama bagi masyarakat Indonesia. Namun, selain beras, masyarakat juga memanfaatkan berbagai tanaman lokal sebagai bahan makanan pendamping atau pengganti makanan pokok. Contoh yang umum digunakan adalah rebung yang sering diolah sebagai pelengkap hidangan, serta singkong dan berbagai jenis umbi-umbian seperti umbi talas (Colocasia esculenta) dan umbi gadung (Dioscorea hispida) yang dapat menjadi alternatif sumber karbohidrat. Daun singkong juga banyak dikonsumsi sebagai sayuran bergizi [1, 2]. Rebung diketahui mengandung berbagai zat gizi seperti kalium, karbohidrat, serat, vitamin, asam amino, serta antioksidan seperti flavonoid, fenol, dan steroid [3, 4]. Menurut Muniarty et al. [5], rebung sangat cocok untuk program diet karena kandungan seratnya yang tinggi dapat memberikan rasa kenyang lebih lama dan membantu mengontrol nafsu makan. Tanaman singkong menghasilkan umbi kaya pati dan daun dengan kandungan protein sekitar 17%, serta senyawa fenolik dan flavonoid yang memiliki aktivitas antioksidan kuat [6, 7]. Sementara itu, umbi talas dan umbi gadung mengandung karbohidrat, lemak, dan protein yang dapat diolah menjadi berbagai produk pangan, seperti tepung talas yang digunakan sebagai bahan dasar kue, roti, mie, dan sarapan instan [8].

Meskipun memiliki berbagai manfaat gizi, beberapa tanaman tersebut juga diketahui mengandung senyawa beracun seperti sianida yang belum banyak diketahui masyarakat. Kandungan sianida pada rebung dapat meningkat seiring bertambahnya umur, ditandai dengan rasa pahit yang lebih kuat [9]. Daun singkong mengandung senyawa sianida yang terikat pada glikosida dalam getah berwarna putih, sementara umbi-umbian seperti singkong, talas, dan gadung juga dilaporkan mengandung senyawa serupa [8]. Sianida (CN⁻) merupakan senyawa kimia yang dapat berasal dari aktivitas alami maupun buatan manusia. Sianida dapat ditemukan dalam bentuk padat seperti natrium sianida (NaCN) dan kalium sianida (KCN), serta dalam bentuk gas seperti hidrogen sianida (HCN) dan klorida sianogen (CNCl). Beberapa spesies tumbuhan mengandung glikosida sianogenik yang dapat melepaskan HCN ketika mengalami degradasi biologis [10, 11]. Hidrogen sianida merupakan racun yang menghambat kerja enzim pernapasan seluler, sehingga dapat menyebabkan gangguan pernapasan serius hingga kematian. Ketika dikonsumsi, HCN cepat diserap oleh sistem pencernaan dan masuk ke dalam aliran darah [12].

Penelitian oleh Sulistinah et al. [13] menunjukkan bahwa metode pikrat merupakan cara yang efektif, sederhana, dan praktis untuk mendeteksi keberadaan senyawa sianida dalam bahan tanaman. Metode ini mampu memperkirakan kandungan sianogen dalam waktu relatif singkat dengan rentang konsentrasi ideal 0–200 ppm. Namun, penelitian sebelumnya umumnya hanya berfokus pada deteksi sianida pada singkong atau produk olahannya, sedangkan studi perbandingan dengan bahan pangan lain seperti rebung, daun singkong, talas, dan gadung masih sangat terbatas. Selain itu, sebagian besar penelitian terdahulu bersifat kuantitatif dan belum banyak melakukan skrining kualitatif yang bertujuan memberikan pemahaman dan kesadaran masyarakat terhadap risiko paparan sianida dari makanan sehari-hari. Oleh karena itu, penelitian ini bertujuan untuk melakukan skrining kualitatif kandungan sianida pada singkong, daun singkong, rebung bambu, umbi gadung, dan umbi talas menggunakan metode pikrat. Penelitian ini tidak hanya bertujuan untuk membandingkan intensitas hasil deteksi antar sampel, tetapi juga sebagai langkah awal dalam penyadaran risiko toksisitas pangan serta sebagai dasar untuk pengembangan analisis kuantitatif lanjutan mengenai kadar sianida pada bahan pangan lokal di Indonesia.

B. METODOLOGI

Preparasi Sampel

Sampel yang digunakan dalam penelitian ini meliputi singkong, rebung bambu, umbi gadung, umbi talas, dan daun singkong. Semua bahan dicuci bersih, dikupas kulitnya (untuk umbi), kemudian dipotong kecil dan dihaluskan. Masing-masing sebanyak 50 gram sampel dimasukkan ke dalam labu erlenmeyer, kemudian ditambahkan 50 mL akuades dan 10 mL larutan asam tartarat 5% untuk membantu pelepasan senyawa sianida yang terikat. Prosedur ini mengacu pada metode Sulistinah et al. [13] yang telah dimodifikasi pada tahap pemanasan, yaitu dengan cara maserasi selama 2 jam agar senyawa sianida dalam sampel dapat terlepas secara optimal sebelum dilakukan pengujian.

Pembuatan Kertas Pikrat

Pembuatan kertas pikrat dilakukan berdasarkan metode Sulistinah et al. [13] dengan sedikit modifikasi. Kertas pikrat dibuat dengan cara memotong kertas saring menjadi ukuran $\pm 1 \times 7$ cm, kemudian direndam dalam larutan pikrat jenuh (campuran asam pikrat dan natrium karbonat 8%) selama 1 jam. Setelah itu, kertas dikeringkan pada suhu kamar, dibungkus menggunakan aluminium foil, dan disimpan dalam wadah tertutup untuk menghindari paparan cahaya dan kelembapan.

Uji Kualitatif Senyawa Sianida

Uji kualitatif dilakukan dengan menggunakan metode pikrat yang dimodifikasi dari Sulistinah et al. [13] dan Muawanah et al. [12]. Prinsip metode ini adalah reaksi antara ion sianida dengan kertas pikrat alkalis yang menghasilkan perubahan warna spesifik. Sampel uji terdiri atas singkong, daun singkong, rebung bambu, umbi gadung, dan umbi talas yang telah dimasak. Masing-masing sampel dimasukkan ke dalam erlenmeyer, kemudian kertas pikrat yang telah dibasahi dengan larutan natrium karbonat 8% digantung di dalam erlenmeyer tanpa menyentuh sampel. Erlenmeyer ditutup rapat dan dipanaskan menggunakan hot plate pada suhu 70° C selama 15 menit.

Perubahan warna pada kertas pikrat diamati dan dibandingkan dengan skala warna standar, mulai dari kuning (negatif) hingga merah bata (positif kuat), sebagai acuan interpretasi hasil. Perubahan warna dari kuning menjadi merah bata menunjukkan adanya kandungan sianida dalam sampel. Penelitian ini dilakukan tanpa pengulangan (single test) karena bersifat eksploratif pendahuluan, dengan tujuan utama untuk mengonfirmasi keberadaan senyawa sianida pada masing-masing bahan pangan. Kontrol negatif berupa erlenmeyer berisi akuades tanpa sampel tetap digunakan untuk memastikan tidak terjadi reaksi positif palsu.

Analisis Data

Data hasil uji kualitatif dianalisis secara deskriptif, dengan membandingkan intensitas perubahan warna antar sampel dan terhadap kontrol negatif. Tidak dilakukan analisis statistik karena penelitian ini bersifat eksploratif dan bertujuan untuk skrining awal kandungan sianida pada berbagai bahan pangan lokal.

C. HASIL DAN PEMBAHASAN

Uji Kualitatif Senyawa Sianida

Uji kualitatif senyawa sianida dalam penelitian ini dilakukan pada beberapa tanaman seperti singkong dan daun singkong (*Manihot esculenta Crantz*), rebung bambu (*Dendrocalamus asper*), umbi gadung (*Dioscorea hispida*), dan umbi talas (*Colocasia esculenta* (L.) Schoot). Hasil uji dapat dilihat pada Tabel 1.

No	Sampel	Perubahan warna pikrat		Hasil
		Sebelum	Sesudah	
1	Singkong	Kuning	Merah bata	+
2	Daun singkong	Kuning	Merah bata	++
3	Rebung bambu	Kuning	Merah bata	++
4	Umbi gadung	Kuning	Merah bata	+
5	Umbi talas	Kuning	Merah bata	+

Tabel 1. Hasil Uji Kualitatif Senyawa Sianida

Pengujian secara kualitatif dalam penelitian ini menggunakan kertas pikrat. Kertas pikrat digunakan sebagai indikator untuk mengidentifikasi ada tidaknya kandungan sianida dalam suatu tanaman yang diujikan [14]. Kertas pikrat adalah alat uji sederhana yang terbuat dari kertas saring yang dipotong dalam bentuk strip. Kertas ini direndam dalam campuran natrium karbonat dan asam pikrat yang telah dilarutkan dalam air deionisasi, kemudian dikeringkan hingga siap digunakan [6]. Kandungan sianida pada suatu sampel akan terdeteksi jika terjadi perubahan warna pada kertas pikrat dari warna awal yaitu kuning akan berubah menjadi merah bata [14]. Perubahan warna pada kertas ini berdasarkan prinsip hidrolisis senyawa glukosida sianogenik seperti linamarine, yang menghasilkan sianat. Tes menggunakan kertas pikrat ini

akan mengidentifikasi asam pikrat sebagai pembawa sianida (HCN) yang dilepaskan selama hidrolisis. Perubahan warna dalam kertas pikrat menunjukkan pembentukan asam isopurpureat yang sebanding dengan jumlah kandungan sianida pada sampel. Semakin tebal warna-warna yang muncul di atas kertas pikrat, maka semakin tinggi kandungan sianida sampel [13].

Sampel-sampel yang telah diuji menunjukkan terjadinya perubahan warna menjadi merah bata pada kertas pikrat (Tabel 1). Perubahan tersebut mengindikasikan adanya senyawa sianida pada seluruh sampel yang diuji. Semua sampel menunjukkan hasil positif, namun intensitas warna bervariasi antar sampel. Daun singkong dan rebung bambu memperlihatkan warna kertas pikrat yang lebih pekat atau lebih gelap dibandingkan dengan sampel lainnya. Hasil ini sejalan dengan teori yang dikemukakan oleh Sulistinah et al. [13] yang menjelaskan bahwa semakin tebal atau pekat warna yang muncul pada kertas pikrat, maka kandungan sianida pada sampel tersebut semakin tinggi.

Metode pikrat memiliki keunggulan dibandingkan metode uji kualitatif lainnya karena sederhana, cepat, murah, dan tidak memerlukan peralatan laboratorium kompleks, namun tetap mampu memberikan hasil deteksi yang akurat terhadap keberadaan sianida [12]. Selain itu, intensitas warna yang dihasilkan oleh kertas pikrat bersifat semi-kuantitatif, karena tingkat perubahan warna dapat dikorelasikan secara linear dengan kadar sianida apabila dilakukan pembacaan absorbansi menggunakan spektrofotometer pada panjang gelombang sekitar 510 nm [11]. Dengan demikian, penggunaan metode kualitatif berbasis kertas pikrat pada penelitian ini dapat dianggap sebagai tahap eksplorasi awal yang representatif untuk mendeteksi keberadaan sianida, serta berpotensi menjadi dasar bagi analisis kuantitatif lanjutan yang lebih terukur menggunakan metode spektrofotometri.

Daun singkong merupakan salah satu tanaman yang mengandung glikosida sianogenik dalam jumlah cukup tinggi. Menurut Oktafiani [15], daun singkong mengandung sekitar 690,54 ppm asam sianida (HCN) pada berat basah sampel sebesar 100 gram, yang menunjukkan kadar sianida relatif tinggi dibandingkan dengan bagian tanaman singkong lainnya. Aktivitas enzim linamarase tertinggi terdapat pada daun yang masih sangat muda, sehingga pelepasan HCN lebih besar pada tahap ini. Temuan ini sejalan dengan penelitian sebelumnya yang melaporkan bahwa bagian tanaman yang kaya akan glikosida sianogenik meliputi kulit batang, tangkai daun muda, kulit umbi, serta daun muda. Hal ini juga diperkuat oleh penelitian Kurnia dan Marwatoen [16] yang menunjukkan bahwa kandungan sianida pada daun muda lebih tinggi dibandingkan daun tua karena proses metabolisme aktif yang menghasilkan prekursor sianogenik lebih banyak. Begitupun dengan rebung bambu, kandungan sianida tertinggi selain pada daun singkong adalah pada rebung bambu. Kandungan sianida pada rebung memengaruhi ukuran dan usia rebung tersebut. Semakin tua rebung, rasa pahitnya semakin terasa dan kadar sianidanya pun meningkat. Rebung mengandung racun alami berupa glikosida sianogenik, yang efek keracunannya mirip dengan gejala keracunan akibat konsumsi tanaman singkong. Ketika kadar sianida yang masuk ke dalam tubuh berada dalam jumlah kecil, racun ini dapat mengikat vitamin B12, sehingga bisa diekskresikan melalui urine. Namun, jika sianida masuk ke dalam tubuh dalam jumlah besar, racun tersebut akan berikatan dengan tiosianat, yang dapat menyerang enzim oksidase dan menghentikan proses metabolisme aerobik [9, 17].

Untuk mengurangi kadar sianida pada singkong, daun singkong, rebung bambu, umbi talas, dan umbi gadung, langkah-langkah yang dapat dilakukan adalah dengan membersihkan bahan menggunakan air mengalir. Kemudian, rendam dalam air garam. Selanjutnya, masak dengan air mendidih, dan saat memasak, pastikan penutup wadah dibuka agar sianida dapat menguap. Selain itu kadar sianida pada sampel-sampel tersebut dapat dikurangi dengan fermentasi, pemanasan, perendaman abu sekam, dan pengasaman [2, 8, 9, 18, 19].

D. SIMPULAN

Sejumlah tanaman yang telah diuji seperti singkong, daun singkong, rebung bambu, umbi gadung, dan umbi talas terbukti positif mengandung senyawa sianida, yang ditandai dengan perubahan warna kertas pikrat dari kuning menjadi merah bata. Hasil ini menunjukkan bahwa bahan pangan yang umum dikonsumsi masyarakat Indonesia masih berpotensi mengandung senyawa toksik alami apabila tidak melalui proses pengolahan yang tepat. Penelitian ini berkontribusi dalam memberikan bukti kualitatif awal mengenai keberadaan sianida menggunakan metode pikrat sederhana yang mudah diaplikasikan di laboratorium pendidikan maupun penelitian dasar. Sebagai tindak lanjut, penelitian berikutnya disarankan untuk melakukan analisis kuantitatif menggunakan metode spektrofotometri guna menentukan kadar pasti sian-

ida pada tiap sampel serta mengevaluasi efektivitas berbagai teknik pengolahan (seperti perebusan, fermentasi, dan pengasaman) dalam menurunkan kadar sianida. Hasil penelitian lanjutan diharapkan dapat menjadi dasar pengembangan pedoman keamanan pangan berbasis bahan alami lokal.

E. UCAPAN TERIMAKASIH

Ucapan teriamakasih yang sebesar besarnya penulis ucapkan kepada seluruh pihak yang terlibat dalam peneitian ini.

KONTRIBUSI PENULIS

Penulis mendeklarasikan bahwa selama penelitian dan penulisan artikel ini kontribusi penulis terbagi secara merata.

FUNDING

Penelitian ini didanai secara mandiri.

KONFLIK KEPENTINGAN

Penulis mendeklarasikan bahwa tidak ada konflik kepentingan dalam penyelesaian dan penyusunan penelitian ini.

DAFTAR PUSTAKA

- [1] T. L. Boro, M. T. Ruma, S. R. Toly, and D. D. S. Dully, "Jenis-Jenis Tanaman Pangan Pokok Dan Kearifan Lokal Dalam Pemanfaatannya Sebagai Cadangan Makanan Di Desa Alas Kecamatan Kobalima Timur Kabupaten Malaka," *Jurnal Biotropikal Sains*, vol. 17, no. 3, pp. 1–9, 2020.
- [2] W. Wulandari, C. A., Hersoelistyorini and Nurhidjah, "Pembuatan Tepung Gadung (Dioscorea Hispidia Dennst) Melalui Proses Perendaman Menggunakan Ekstrak Fermentasi," *Nasional Prosiding Publikasi Kubis Seminar Hasil-Hasil Penelitian Dan Pengabdian Masyarakat*, pp. 423–430., 2017.
- [3] N. Q. Rasyid, M. R. Rianto, and I. R. Cahyani, "Pengaruh Waktu Perendaman pada Rebung Betung (Dendrocalamus asper) terhadap Penurunan Kadar Sianida," *Jurnal Medika*, vol. 4, no. 1, pp. 31–35, 2019, https://doi.org/10.53861/jmed.v4i1.164.
- [4] C. Venagaya, S. Anam, and Y. Yuyun, "Variasi Waktu dan Cara Pengolahan Sebelum Dikonsumsi terhadap Penurunan Kandungan Asam Sianida pada Varietas Rebung Bambu Ampel (Bambusa vulgaris Schrad. ex Wendl.)," *KOVALEN*, vol. 3, p. 189, sep 2017, https://doi.org/10.22487/j24775398.2017.v3.i2.8726.
- [5] P. Muniarty, D. Saputri, N. F. Syaframis, M. A. Maulana, R. Zulianti, and S. N. Alfisahr, "Pemanfaatan Rebung sebagai Makanan Program Diet Yang Bernilai Ekonomis," *Bulletin of Management and Business*, vol. 2, no. 2, pp. 203–210, 2021, https://doi.org/10.31328/bmb.v2i2.162.
- [6] H. Munawar and F. Ramadhani, "A Preliminary Study of Sensor Prototype for Measurement of Cyanide Toxicity in Forage Ruminant by Cyclic Voltammetry," *Pros.Semnas.TPV-2020*, pp. 858–871, 2020.
- [7] Hasim, S. Falah, and L. K. Dewi, "Pengaruh Perebusan Daun Singkong (Manihot esculenta crantz) terhadap Kadar Total Fenol, Flavonoid dan Aktivitas Antioksidannya)," *Current Biochemistry*, vol. 3, no. 3, pp. 116–127, 2016.
- [8] H. Naisali, P. A. R. Utoro, and J. E. Witoyo, "Review Keragaman dan Metode Pengolahan Umbi-Umbian Lokal Nusa Tenggara Timur," *Jurnal Pangan dan Gizi*, vol. 13, no. 2, pp. 1–17, 2023, https://doi.org/10.26714/jpg.13.2.2023.1-17.

- [9] D. Arisanti, N. Q. Rasyid, and M. Nasir, "Analisis Kadar Sianida Pada Rebung Berdasarkan Volume Ukuran Dari Kecamatan Bajeng Kabupaten Gowa," *Indonesian Journal of Chemical Research*, vol. 6, no. 1, pp. 6–11, 2018, https://doi.org/10.30598/ijcr.2018.6-dew.
- [10] M. M. Pitoi, "Sianida: Klasifikasi, Toksisitas, Degradasi, Analisis (Studi Pustaka)," *Jurnal MIPA*, vol. 4, no. 1, pp. 1–4, 2015, https://doi.org/10.35799/jm.4.1.2015.6893.
- [11] B. Rachmat, P. Sidebang, and I. Purwandari, "Akumulasi Senyawa Sianida, Krom, Mangan, Besi pada Air Baku dan Penilaian Risiko Kesehatan Masyarakat Di Kecamatan Babakan Madang Kabupaten Bogor," *Journal of Cimmunity Medicine and Public Health*, vol. 35, no. 3, pp. 97–105, 2019.
- [12] M. Muawanah, M. Anshar, and M. Lisaholet, "Perbandingan Kadar Sianida Sebelum dan Sesudah Pengolahan pada Singkong," *Jurnal Medika*, vol. 5, no. 1, pp. 1–4, 2020, https://doi.org/10.53861/jmed.v5i1.173.
- [13] N. Sulistinah, R. Riffiani, and B. Sunarko, "Pengembangan Sistem Deteksi Senyawa Sianogen dalam Ubi Kayu (Manihot esculenta Crantz) dengan Pendekatan Enzimatis," *Jurnal Biologi Indonesia*, vol. 10, no. 1, pp. 77–82, 2014.
- [14] D. Sujana, Y. Rahman Nugraha, D. Muhammad Hasyim, Z. Farhan, P. Studi Diploma III Farmasi, S. Karsa Husada Garut, and P. Studi Diploma III Analis Kesehatan, "Identifikasi Kadar Sianida pada Biji Picung Mentah (Pangium edule Reinw) yang Berasal Dari Cisewu Garut dengan Metode Spektrofotometri UV-VIS," Jurnal Sains Dan Teknologi Laboratorium Medik, vol. 5, no. 2, pp. 1–7, 2020, https://doi.org/10.52071/jstlm.v5i2.90.
- [15] H. Oktafiani, "Performa dan Kecernaan Nutrien pada Domba yang Diberi Tepung Daun Singkong Pahit (Manihot esculenta) dan Bakteri Pendegradasi HCN," 2017.
- [16] N. Kurnia and F. Marwatoen, "Penentuan Kadar Sianida Daun Singkong dengan Variasi Umur Daun dan Waktu Pemetikan," *ilmiah pendidikan kimia Hydrogen*, vol. 1, no. 2, pp. 117–121, 2018.
- [17] E. Novelia, R. Indrawati, and L. Triana, "Perbedaan Kadar Asam Sianida pada Rebung Sebelum dan Sesudah Difermentasi dengan Larutan," *Jurnal Laboratorium Khatulistiwa*, vol. 2, no. 2, p. 53, 2019, https://doi.org/10.30602/jlk.v2i2.330.
- [18] D. Junaidi, M. C. K. P. Santoso, E. S. Retnoningtyas, and S. B. Hartono, "Penurunan Kadar Sianida pada Umbi Gadung (Dioscorea hispida) dengan Proses Fermentasi Menggunakan Kapang Rhizopus Oryzae," Jurnal Ilmiah Widya Teknik, vol. 14, no. 1, pp. 9–14, 2015.
- [19] A. R. Pramitha and S. N. Wulan, "Detoksifikasi Sianida Umbi Gadung (Dioscorea hipsida Dennst.) Dengan Kimbinasi Perendaman Dalam Abu Sekam dan Perebusan." *Jurnal Pangan Dan Agroindustri*, vol. 5, no. 2, p. 5865, 2017.