Robust Singular Value Decomposition Method on Minor Outlier Data
DOI:
https://doi.org/10.30812/varian.v4i1.857Keywords:
Outlier, Minor outlier, Robust, Singular value, DecompositionAbstract
In multivariate statistics, Singular Value Decomposition (SVD) for a data matrix containing outliers does not provide data that can be analyzed optimally. This study aims to overcome outlier data using the Robust Singular Value Decomposition (RSVD) method and compare it with the SVD method. The analysis using the RSVD method includes several steps, namely determining the initial predictive value of the vector u and regressing it then normalizing the estimator vector β and carrying out the iteration process until convergent results are obtained. The results of this study indicate that the RSVD for dealing with minor outliers data is not influenced by initial estimates. The RSVD method is strongly influenced by the large amount of outliers data, the more extreme outliers data, the more iterations are.
References
Anton, H. (1987). Aljabar Linear Elementer (Jakarta). Erlangga.
Bali, J. L., Boente, G., Tyler, D. E., & Wang, J. L. (2011). Robust Functional Principal Components: A Projection-Pursuit Approach. The Annals of Statistics, 39(6), 2852–2882.
Bretscher, O. (1997). Linear Algebra with Applications. New York: Prentice-Hall Inc.
Filzmoser, P., & Gregorich, M. (2020). Multivariate Outlier Detection in Applied Data Analysis: Global, Local, Compositional and Cellwise Outliers. Mathematical Geosciences, 12(2), 1–18.
Härdle, W. K., & Simar, L. (2015). Applied Multivariate Statistical Analysis (4th ed.). Berlin: Springer.
Huber, P. J., & Ronchetti, E. M. (2011). Robust Statistics (2nd ed.). New Jersey: John Wiley & Sons.
Liu, L., Hawkins, D. M., Gosh, S., & Young, S. S. (2003). Robust Singular Value Decomposition Analysis of Microarray Data. Proceedings of the National Academy of Sciences of the USA, 100, 167–172.
Locantore, N., Marron, J. S., Simpson, D. G., Tripoli, N., Zhang, J. T., Cohen, K. L., … Cohen, K. L. (1999). Robust Principal Component Analysis for Functional Data. Test, 8(1), 1–73.
Neter, J., Wasserman, W., and Kutner, M. H. (1990). Applied Linear Statistical Model. New York: Richard D Irwin Inc.
Ren, J., Li, X., & Haupt, J. (2017). Robust PCA via Tensor Outlier Pursuit. Conference Record - Asilomar Conference on Signals, Systems and Computers, 1744–1749.
Valverde-albacete, & J, F. (2020). The Singular Value Decomposition over Completed Idempotent Semifields. Mathematics, 8(9), 1–39.
Zhang, L., Marron, J.S., Shen, H., and Z. Z. (2007). Singular Value Decomposition and Its Visualization. Journal of Computational Graphical Statistics, 16, 833–854.
Zhang, L., Shen, H., Huang, J. Z. (2013). ). Robust Regularized Singular Value Decomposition with Application to Mortality Data. The Annals of Applied Statistics, 7(3), 1–23.
Zhou, P., & Feng, J. (2017). Outlier Robust Tensor PCA. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2263–2271.
Downloads
Published
Issue
Section
How to Cite
Most read articles by the same author(s)
- Bernadhita Herindri Samodera Utami, Agus Irawan, Miswan Gumanti, Gilang Primajati, Hausman and Taylor Estimator Analysis on The Linear Data Panel Model , Jurnal Varian: Vol. 5 No. 1 (2021)
- Bernadhita Herindri Samodera Utami, Dwi Herinanto, Miswan Gumanti, Characteristic Estimator of Interval-Censored Binomial Data and Its Application , Jurnal Varian: Vol. 6 No. 1 (2022)
- Bernadhita Herindri Samodera Utami, Miswan Gumanti, Analisis Komponen Utama pada Kondisi Aset Koperasi Simpan Pinjam di Indonesia: Data BPS Tahun 2012-2015 , Jurnal Varian: Vol. 2 No. 1 (2018)