Evaluating Fisherman Insurance Participation using Bagging Multivariate Adaptive Regression Splines

Authors

  • Ulil Azmi Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Soehardjoepri Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Prilyandari Dina Saputri Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Thalia Rizki Salsabila Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Widya Iswara Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Roslinazairimah Zakaria Universiti Malaysia Pahang Al-Sultan Abdullah, Pahang, Malaysia

DOI:

https://doi.org/10.30812/varian.v8i3.5373

Keywords:

Bootstrap Aggregating, Fishermen, Independent Fishermen’s Insurance, Multivariate Adaptive Regression, Spline, Risk

Abstract

The Fishermen’s Insurance Premium Assistance Program and the Independent Fishermen’s Insurance Scheme are initiatives by the Indonesian government aimed at enhancing the protection of fishermen, whose occupations are considered high-risk compared to other professions. One of the regions actively participating in both programs is Lekok District, located in Pasuruan Regency, East Java Province. The objective of this research is to analyze the factors influencing fishermen’s participation in self-funded insurance schemes using the Multivariate Adaptive Regression Spline method. The research is based on primary data collected through direct surveys and structured questionnaires distributed to fishermen in Lekok District. The results of this research are that five key variables significantly influence participation, with the most influential factor being participation in outreach or socialization activities. Other important factors include the number of family members (X4), income (X3), and age (X1), while fishing experience (X5) does not show a significant effect. The model’s classification accuracy on the training data reached 82%, while on the test data it was 75.8%. Furthermore, applying the bootstrap aggregation technique to Multivariate Adaptive Regression Splines models significantly improved classification accuracy to 92% on the training data and 100% on the test data. The findings are expected to support stakeholders in formulating strategies to increase fishermen’s engagement in independent insurance programs. Strengthening such participation is crucial for reducing occupational risks, ensuring the sustainability of fishing activities, and improving the welfare and resilience of the fishing community. 

Downloads

Download data is not yet available.

References

Al-Musaylh, M. S., Deo, R. C., Adamowski, J. F., & Li, Y. (2018). Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia. Advanced Engineering Informatics, 35, 1–16. https://doi.org/10.1016/j.aei.2017.11.002

Amin, M. M., Zainal, A., Azmi, N. F. M., & Ali, N. A. (2020). Feature Selection Using Multivariate Adaptive Regression Splines in Telecommunication Fraud Detection. IOP Conference Series: Materials Science and Engineering, 864(1), 012059. https://doi.org/10.1088/1757-899X/864/1/012059

Asyya, M. F., & Agusta, I. (2021). Analisis Partisipasi Nelayan dalam Program Asuransi Nelayan. Jurnal Sains Komunikasi dan Pengembangan Masyarakat [JSKPM], 5(2), 294–311. https://doi.org/10.29244/jskpm.v5i2.818

Bose, A., Hsu, C.-H., Roy, S. S., Lee, K. C., Mohammadi-ivatloo, B., & Abimannan, S. (2021). Forecasting stock price by hybrid model of cascading Multivariate Adaptive Regression Splines and Deep Neural Network. Computers and Electrical Engineering, 95, 107405. https://doi.org/10.1016/j.compeleceng.2021.107405

Brahmantyo, Y., Riaman, R., & Sukono, F. (2021). Willingness to Pay of Fishermen Insurance Using Logistic Regression with Parameter Estimated by Maximum Likelihood Estimation Based on Newton Raphson Iteration. Jurnal Matematika Integratif, 17(1), 15. https://doi.org/10.24198/jmi.v17.n1.32037.15-21

Cox, D. R., & Snell, E. J. (1989, May 15). Analysis of Binary Data, Second Edition. CRC Press.

De Andres, J., Lorca, P., De Cos Juez, F. J., & Sánchez-Lasheras, F. (2011). Bankruptcy forecasting: A hybrid approach using Fuzzy c-means clustering and Multivariate Adaptive Regression Splines (MARS). Expert Systems with Applications, 38(3), 1866–1875. https://doi.org/10.1016/j.eswa.2010.07.117

Eubank, R. L. (1999, February 9). Nonparametric Regression and Spline Smoothing (0th ed.). CRC Press. https://doi.org/10.1201/9781482273144

Friedman, J. H. (1991). Multivariate Adaptive Regression Splines. The Annals of Statistics, 19(1), 1–67. https://doi.org/10.1214/aos/1176347963

Gonzalez Ariza, A., Arando Arbulu, A., Navas González, F. J., Delgado Bermejo, J. V., & Camacho Vallejo, M. E. (2021). Discriminant Canonical Analysis as a Validation Tool for Multivariety Native Breed Egg Commercial Quality Classification. Foods, 10(3), 632. https://doi.org/10.3390/foods10030632

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. Springer. https://doi.org/10.1007/978-0-387-84858-7

Hasyim, M., Rahayu, D. S., Muliawati, N. E., Hayuhantika, D., Puspasari, R., Anggreini, D., Hastari, R. C., Hartanto, S., & Utomo, F. H. (2018). Bootstrap Aggregating Multivariate Adaptive Regression Splines (Bagging MARS) to Analyse the Lecturer Research Performance in Private University. Journal of Physics: Conference Series, 1114, 012117. https://doi.org/10.1088/1742-6596/1114/1/012117

Hlokoe, V. R., Mokoena, K., & Tyasi, T. L. (2022). Using multivariate adaptive regression splines and classification and regression tree data mining algorithms to predict body weight of Nguni cows. Journal of Applied Animal Research, 50(1), 534–539. https://doi.org/10.1080/09712119.2022.2110498

Holmes, S., & Huber, W. (2019). Modern statistics for modern biology. Cambridge University Press.

Otok, B. W., Rumiati, A. T., Ampulembang, A. P., & Azies, H. A. (2023). ANOVA Decomposition and Importance Variable Process in Multivariate Adaptive Regression Spline Model. International Journal on Advanced Science, Engineering and Information Technology, 13(3), 928–934. https://doi.org/10.18517/ijaseit.13.3.17674

Rupilu, R. A. H. W., & Rosadi, D. (2024). Classification Analysis Using Bootstrap Aggregating Multivariate Adaptive Regression Spline (Bagging MARS). BAREKENG: Jurnal Ilmu Matematika dan Terapan, 18(3), 1381–1390. https://doi.org/10.30598/barekengvol18iss3pp1381-1390

Seno, M. E., Zeini, H. A., Imran, H., Noori, M., Henedy, S. N., & Ghazaly, N. M. (2024). Advancing in creep index of soil prediction: A groundbreaking machine learning approach with Multivariate Adaptive Regression Splines. Results in Materials, 24, 100641. https://doi.org/10.1016/j.rinma.2024.100641

Downloads

Published

2025-10-31

Issue

Section

Articles

How to Cite

[1]
“Evaluating Fisherman Insurance Participation using Bagging Multivariate Adaptive Regression Splines”, JV, vol. 8, no. 3, pp. 319–332, Oct. 2025, doi: 10.30812/varian.v8i3.5373.