Ensemble Quick Robust Clustering Using Links for Clustering Hypertension Patients at a Health Center
DOI:
https://doi.org/10.30812/varian.v8i3.5151Keywords:
Agglomerative Nesting, Clustering, Ensemble, Hypertension, Quick Robust Clustering Using LinksAbstract
Hypertension is a chronic disease with a high risk of cardiovascular complications and requires treatment according to patient characteristics. At the health center, the number of hypertensive patients is 6953, the highest recorded. Therefore, this study aims to classify and determine the characteristics of hypertensive patients at a health center. The method used in this study is Ensemble Quick Robust Clustering Using Links. This method combines the clustering results of Quick Robust Clustering Using Links and Agglomerative Nesting. Where this method is more efficient in clustering. The results of this study show the number of clusters in the Quick Robust Clustering Using Links method is 3, Agglomerative Nesting is 3 and in the Quick Robust Clustering Using Links Ensemble produces 9 clusters with the following distribution: Cluster 1 shows low hypertension, cluster 2 shows high hypertension, cluster 3 to cluster 6 shows high hypertension, cluster 7 shows moderate hypertension, cluster 8 shows high hypertension and cluster 9 shows moderate hypertension. Thus, grouping patients based on a combination of numerical and categorical variables can provide more detailed information about the severity of hypertension.
Downloads
References
Abushilah, S. F., & Abbas, R. H. (2023). Performance Evaluation of Some Clustering Algorithms under Different Validity Indices. Mathematical Modelling of Engineering Problems, 10(4), 1271–1280. https://doi.org/10.18280/mmep.100420
Alvionita, A. (2017, March 18). Metode ensembel rock dan swfm untuk pengelompokan data campuran numerik dan kategorik pada kasus aksesi jeruk [Thesis]. Institut Teknologi Sepuluh Nopember. https://repository.its.ac.id/2440/
Bailey, M. A., & Dhaun, N. (2024). Salt Sensitivity: Causes, Consequences, and Recent Advances. Hypertension, 81(3), 476–489. https://doi.org/10.1161/HYPERTENSIONAHA.123.17959
Dinas Kesehatan Provinsi Sulawesi Tengah. (2021). Profil Kesehatan Sulawesi Tengah 2021. https://dinkes.sultengprov.go.id/wpcontent/uploads/2022/05/PROFIL-DINAS-KESEHATAN-2021.pdf
Faizah, N., Surohman, Fabrianto, L., Hendra, & Prasetyo, R. (2020). Unbalanced Data Clustering with K-Means and Euclidean Distance Algorithm Approach Case Study Population and Refugee Data. Journal of Physics: Conference Series, 1477(2), 022005. https://doi.org/10.1088/1742-6596/1477/2/022005
Hermanto, H., Hendi, A., & Zuhriyah, A. (2024). Implementation of the Web-Based K-Means Clustering Algorithm on Hypertension Levels in the Elderly at the Bungah District Health Center. Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics, 6(2), 65–77. https://doi.org/10.35882/h6596074
Jareebi, M. (2024). The Association Between Smoking Behavior and the Risk of Hypertension: Review of the Observational and Genetic Evidence. Journal of Multidisciplinary Healthcare, 17, 3265–3281. https://doi.org/10.2147/JMDH.S470589
Jiang, S.-Z., Lu, W., Zong, X.-F., Ruan, H.-Y., & Liu, Y. (2016). Obesity and hypertension. Experimental and Therapeutic Medicine, 12(4), 2395–2399. https://doi.org/10.3892/etm.2016.3667
Khanna, D., Peltzer, C., Kahar, P., Parmar, M. S., Khanna, D., Peltzer, C., Kahar, P., & Parmar, M. S. (2022). Body Mass Index (BMI): A Screening Tool Analysis. Cureus, 14(2). https://doi.org/10.7759/cureus.22119
Kitt, J., Fox, R., Tucker, K. L., & McManus, R. J. (2019). New Approaches in Hypertension Management: A Review of Current and Developing Technologies and Their Potential Impact on Hypertension Care. Current Hypertension Reports, 21(6), 44. https://doi.org/10.1007/s11906-019-0949-4
Kumar, S., & Toshniwal, D. (2016). Analysis of hourly road accident counts using hierarchical clustering and cophenetic correlation coefficient (CPCC). Journal of Big Data, 3(1), 13. https://doi.org/10.1186/s40537-016-0046-3
Nawi, A. M., Mohammad, Z., Jetly, K., Razak, M. A. A., Ramli, N. S., Wan Ibadullah, W. A. H., & Ahmad, N. (2021). The Prevalence and Risk Factors of Hypertension among the Urban Population in Southeast Asian Countries: A Systematic Review and Meta-Analysis (M. Salvetti, Ed.). International Journal of Hypertension, 2021, 1–14. https://doi.org/10.1155/2021/6657003
Niran, A. (2024). A Review of Cholesterol’s Dual Impact: Human Health and Environmental Consequences. Badeggi Journal of Agricultural Research and Environment, 6(2), 144–155. https://doi.org/10.35849/BJARE202402/189/013
Nurlaela, G., Taobah Ramdani, H., & Wahyudin. (2025). Nursing Care Analysis of Hypertension Through Hypertension Management with Swedish Massage Therapy. Nursing Case Insight Journal, 3(1), 30–33. https://doi.org/10.63166/zmz8bn56
Prasad, M., & T, S. (2024, November 7). Clustering Accuracy Improvement Using Modified Min-Max Normalization Technique. https://doi.org/10.20944/preprints202411.0486.v1
Ratnasari, V., & Dani, A. T. R. (2023). Mapping the Provincial Food Security Conditions in Indonesia Using Cluster Ensemble-Based Mixed Data Clustering-Robust Clustering with Links (CEBMDC-ROCK). International Journal on Advanced Science, Engineering and Information Technology, 13(2), 611–617. https://doi.org/10.18517/ijaseit.13.2.16457
Sari, I. A., & Saputro, D. R. S. (2021). Algoritme Quick RObust Clustering using linKs (QROCK) untuk Clustering Data Kategorik. PRISMA, Prosiding Seminar Nasional Matematika, 4, 640–644. https://journal.unnes.ac.id/journals
Shofari, M. R. (2024). Quick Robust Clustering Using Links (QROCK) untuk Pengelompokan Desa Kabupaten Banjar. RAGAM: Journal of Statistics & Its Application, 3(1), 97. https://doi.org/10.20527/ragam.v3i1.12805
Singh, R., Pattisapu, A., & Emery, M. S. (2020). US Physical Activity Guidelines: Current state, impact and future directions. Trends in Cardiovascular Medicine, 30(7), 407–412. https://doi.org/10.1016/j.tcm.2019.10.002
Widyawati, W. (2018, November 2). Potret kesehatan indonesia dari riskesdas 2018. Kemenkes. https://kemkes.go.id/id/potret-sehat-indonesia-riskesdas-2018
Zhao, W., Mo, L., & Pang, Y. (2021). Hypertension in adolescents: The role of obesity and family history. The Journal of Clinical Hypertension, 23(12), 2065–2070. https://doi.org/10.1111/jch.14381
Zubiyo, A., Rohani, T., & Rustandi, H. (2025). Factors Associated With The Incidence Of Hypertension In Young Adults At Pasar Ikan Community Health Centre, Bengkulu City, 2024. Multidisciplinary Journals, 2(2), 57–66. https://doi.org/10.37676/mj.v2i2.696
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Neli Niftayana, Mohammad Fajri, Nurul Fiskia Gamayanti

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Most read articles by the same author(s)
- Mohammad Fajri, Rais Rais, Nurul Fiskia Gamayanti, Siti Natazha Dg Mabaji, Shalsa Yunita Rahman Jati, Rizwan Arisandi, Mapping of Village Population Profile with Schistosomiasis Cases Using Clustering Large Applications , Jurnal Varian: Vol. 7 No. 2 (2024)
- Nur Azizah, Nurul Fiskia Gamayanti, Junaidi Junaidi, Hartayuni Sain, Fadjryani Fadjriyani, Modeling the Number of High School Dropouts Using GWGPR , Jurnal Varian: Vol. 8 No. 1 (2024)
- Salma Soleha, Nurul Fiskia Gamayanti, Hartayuni Sain, Fadjryani, Analysis of the Relationship Between Net Exports and Gross Regional Domestic Product Using the Panel Vector Correction Model (PVECM) Approach , Jurnal Varian: Vol. 8 No. 3 (2025)












