Ensemble Quick Robust Clustering Using Links for Clustering Hypertension Patients at a Health Center

Authors

  • Neli Niftayana Universitas Tadulako, Palu, Indonesia
  • Mohammad Fajri Universitas Tadulako, Palu, Indonesia
  • Nurul Fiskia Gamayanti Universitas Tadulako, Palu, Indonesia

DOI:

https://doi.org/10.30812/varian.v8i3.5151

Keywords:

Agglomerative Nesting, Clustering, Ensemble, Hypertension, Quick Robust Clustering Using Links

Abstract

Hypertension is a chronic disease with a high risk of cardiovascular complications and requires treatment according to patient characteristics. At the health center, the number of hypertensive patients is 6953, the highest recorded. Therefore, this study aims to classify and determine the characteristics of hypertensive patients at a health center. The method used in this study is Ensemble Quick Robust Clustering Using Links. This method combines the clustering results of Quick Robust Clustering Using Links and Agglomerative Nesting. Where this method is more efficient in clustering. The results of this study show the number of clusters in the Quick Robust Clustering Using Links method is 3, Agglomerative Nesting is 3 and in the Quick Robust Clustering Using Links Ensemble produces 9 clusters with the following distribution: Cluster 1 shows low hypertension, cluster 2 shows high hypertension, cluster 3 to cluster 6 shows high hypertension, cluster 7 shows moderate hypertension, cluster 8 shows high hypertension and cluster 9 shows moderate hypertension. Thus, grouping patients based on a combination of numerical and categorical variables can provide more detailed information about the severity of hypertension. 

Downloads

Download data is not yet available.

Author Biography

  • Neli Niftayana, Universitas Tadulako, Palu, Indonesia

    Penulis bernama lengkap Neli Niftayana, akrab disapa Neli. Lahir di Sabang, 9 Desember 2002. Penulis merupakan anak ke 3 dari 4 bersaudara, dari pasangan Haris dan Yuliati.

    Penulis memulai pendidikan dasar di SD Negeri 8 Dampelas dan lulus pada tahun 2015. Setelah lulus penulis melanjutkan pendidikan menengah pertama di MTs Negeri 2 Donggala dan lulus tahun 2018. Kemudian melanjutkan pendidikan sekolah menengah atas di SMA Negeri 1 Dampelas dan lulus tahun 2021. Di tahun yang sama penulis melanjutkan pendidikan Perguruan Tinggi Negeri di Program Studi Statistika, Jurusan Fisika dan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Tadulako.

References

Abushilah, S. F., & Abbas, R. H. (2023). Performance Evaluation of Some Clustering Algorithms under Different Validity Indices. Mathematical Modelling of Engineering Problems, 10(4), 1271–1280. https://doi.org/10.18280/mmep.100420

Alvionita, A. (2017, March 18). Metode ensembel rock dan swfm untuk pengelompokan data campuran numerik dan kategorik pada kasus aksesi jeruk [Thesis]. Institut Teknologi Sepuluh Nopember. https://repository.its.ac.id/2440/

Bailey, M. A., & Dhaun, N. (2024). Salt Sensitivity: Causes, Consequences, and Recent Advances. Hypertension, 81(3), 476–489. https://doi.org/10.1161/HYPERTENSIONAHA.123.17959

Dinas Kesehatan Provinsi Sulawesi Tengah. (2021). Profil Kesehatan Sulawesi Tengah 2021. https://dinkes.sultengprov.go.id/wpcontent/uploads/2022/05/PROFIL-DINAS-KESEHATAN-2021.pdf

Faizah, N., Surohman, Fabrianto, L., Hendra, & Prasetyo, R. (2020). Unbalanced Data Clustering with K-Means and Euclidean Distance Algorithm Approach Case Study Population and Refugee Data. Journal of Physics: Conference Series, 1477(2), 022005. https://doi.org/10.1088/1742-6596/1477/2/022005

Hermanto, H., Hendi, A., & Zuhriyah, A. (2024). Implementation of the Web-Based K-Means Clustering Algorithm on Hypertension Levels in the Elderly at the Bungah District Health Center. Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics, 6(2), 65–77. https://doi.org/10.35882/h6596074

Jareebi, M. (2024). The Association Between Smoking Behavior and the Risk of Hypertension: Review of the Observational and Genetic Evidence. Journal of Multidisciplinary Healthcare, 17, 3265–3281. https://doi.org/10.2147/JMDH.S470589

Jiang, S.-Z., Lu, W., Zong, X.-F., Ruan, H.-Y., & Liu, Y. (2016). Obesity and hypertension. Experimental and Therapeutic Medicine, 12(4), 2395–2399. https://doi.org/10.3892/etm.2016.3667

Khanna, D., Peltzer, C., Kahar, P., Parmar, M. S., Khanna, D., Peltzer, C., Kahar, P., & Parmar, M. S. (2022). Body Mass Index (BMI): A Screening Tool Analysis. Cureus, 14(2). https://doi.org/10.7759/cureus.22119

Kitt, J., Fox, R., Tucker, K. L., & McManus, R. J. (2019). New Approaches in Hypertension Management: A Review of Current and Developing Technologies and Their Potential Impact on Hypertension Care. Current Hypertension Reports, 21(6), 44. https://doi.org/10.1007/s11906-019-0949-4

Kumar, S., & Toshniwal, D. (2016). Analysis of hourly road accident counts using hierarchical clustering and cophenetic correlation coefficient (CPCC). Journal of Big Data, 3(1), 13. https://doi.org/10.1186/s40537-016-0046-3

Nawi, A. M., Mohammad, Z., Jetly, K., Razak, M. A. A., Ramli, N. S., Wan Ibadullah, W. A. H., & Ahmad, N. (2021). The Prevalence and Risk Factors of Hypertension among the Urban Population in Southeast Asian Countries: A Systematic Review and Meta-Analysis (M. Salvetti, Ed.). International Journal of Hypertension, 2021, 1–14. https://doi.org/10.1155/2021/6657003

Niran, A. (2024). A Review of Cholesterol’s Dual Impact: Human Health and Environmental Consequences. Badeggi Journal of Agricultural Research and Environment, 6(2), 144–155. https://doi.org/10.35849/BJARE202402/189/013

Nurlaela, G., Taobah Ramdani, H., & Wahyudin. (2025). Nursing Care Analysis of Hypertension Through Hypertension Management with Swedish Massage Therapy. Nursing Case Insight Journal, 3(1), 30–33. https://doi.org/10.63166/zmz8bn56

Prasad, M., & T, S. (2024, November 7). Clustering Accuracy Improvement Using Modified Min-Max Normalization Technique. https://doi.org/10.20944/preprints202411.0486.v1

Ratnasari, V., & Dani, A. T. R. (2023). Mapping the Provincial Food Security Conditions in Indonesia Using Cluster Ensemble-Based Mixed Data Clustering-Robust Clustering with Links (CEBMDC-ROCK). International Journal on Advanced Science, Engineering and Information Technology, 13(2), 611–617. https://doi.org/10.18517/ijaseit.13.2.16457

Sari, I. A., & Saputro, D. R. S. (2021). Algoritme Quick RObust Clustering using linKs (QROCK) untuk Clustering Data Kategorik. PRISMA, Prosiding Seminar Nasional Matematika, 4, 640–644. https://journal.unnes.ac.id/journals

Shofari, M. R. (2024). Quick Robust Clustering Using Links (QROCK) untuk Pengelompokan Desa Kabupaten Banjar. RAGAM: Journal of Statistics & Its Application, 3(1), 97. https://doi.org/10.20527/ragam.v3i1.12805

Singh, R., Pattisapu, A., & Emery, M. S. (2020). US Physical Activity Guidelines: Current state, impact and future directions. Trends in Cardiovascular Medicine, 30(7), 407–412. https://doi.org/10.1016/j.tcm.2019.10.002

Widyawati, W. (2018, November 2). Potret kesehatan indonesia dari riskesdas 2018. Kemenkes. https://kemkes.go.id/id/potret-sehat-indonesia-riskesdas-2018

Zhao, W., Mo, L., & Pang, Y. (2021). Hypertension in adolescents: The role of obesity and family history. The Journal of Clinical Hypertension, 23(12), 2065–2070. https://doi.org/10.1111/jch.14381

Zubiyo, A., Rohani, T., & Rustandi, H. (2025). Factors Associated With The Incidence Of Hypertension In Young Adults At Pasar Ikan Community Health Centre, Bengkulu City, 2024. Multidisciplinary Journals, 2(2), 57–66. https://doi.org/10.37676/mj.v2i2.696

Downloads

Published

2025-10-31

Issue

Section

Articles

How to Cite

[1]
“Ensemble Quick Robust Clustering Using Links for Clustering Hypertension Patients at a Health Center”, JV, vol. 8, no. 3, pp. 307–318, Oct. 2025, doi: 10.30812/varian.v8i3.5151.

Most read articles by the same author(s)