Mixed Geographically Weighted Regression Modeling Using the MM-Estimator Method on Data of Poverty

Authors

  • Amalia Mentari Djalumang Universitas Hasanuddin, Makassar, Indonesia
  • Raupong Universitas Hasanuddin, Makassar, Indonesia
  • Siswanto Universitas Hasanuddin, Makassar, Indonesia

DOI:

https://doi.org/10.30812/varian.v8i3.5146

Keywords:

Method of Moment-Estimator, Mixed Geographically Weighted, Regression, Outliers, Percentage of Poor Population, Tukey Bisquare

Abstract

The mixed geographically weighted regression model combines a global linear regression model with a geographically weighted regression model, with some parameters global and others local. When analyzing data with this model, outliers are common, which can significantly affect the regression coefficients and lead to biased parameter estimates. Therefore, a more robust estimation method that is resistant to outliers is needed to improve accuracy. This study aims to estimate the parameters of the mixed geographically weighted regression model using the Method of Moments (MM) Estimator method, which is more robust to outliers, and to identify the factors that significantly influence the percentage of the poor population in South Sulawesi Province in 2023. The results show that the poverty depth index has a significant global effect on the percentage of the population living in poverty. Meanwhile, the percentage of the population, the open unemployment rate, and the expected years of schooling have significant local effects. Based on these findings, it can be concluded that neighboring regions share common factors influencing poverty rates. These findings can assist policymakers in designing povertyalleviation programs that account for regional differences and support further research on robust spatial modeling approaches. 

Downloads

Download data is not yet available.

References

Almetwally, E., & Almongy, H. (2018). Comparison Between M-estimation, S-estimation, And MM Estimation Methods of Robust Estimation with Application and Simulation. International Journal of Mathematical Archive, 9(11), 55–63.

Azzahro, I. A., & Sofro, A. (2023). Regresi Robust untuk Pemodelan Deforestasi di Indonesia. MATHunesa: Jurnal Ilmiah Matematika, 11(3), 496–507. https://doi.org/10.26740/mathunesa.v11n3.p496-507

Begashaw, G. B., & Yohannes, Y. B. (2020). Review of Outlier Detection and Identifying Using Robust Regression Model. International Journal of Systems Science and Applied Mathematics, 5(1), 4. https://doi.org/10.11648/j.ijssam.20200501.12

Cholid, F. (2023). Perbandingan Geographically Weighted Regression dengan Mixed Geographically Weighted Regression: Studi Kasus Prevalensi Stunting di Indonesia. Statistika, 23(2), 96–109. https://doi.org/10.29313/statistika.v23i2.1700

Comber, A., Brunsdon, C., Charlton, M., Dong, G., Harris, R., Lu, B., Lu, Y., Murakami, D., Nakaya, T., Wang, Y., & Harris, P. (2023). A Route Map for Successful Applications of Geographically Weighted Regression. Geographical Analysis, 55(1), 155–178. https://doi.org/10.1111/gean.12316

Edayu, Z. N., & Syerrina, Z. (2018). A statistical analysis for geographical weighted regression. IOP Conference Series: Earth and Environmental Science, 169, 012105. https://doi.org/10.1088/1755-1315/169/1/012105

Faradiba, H. P., & Dhuhri, A. S. (2024). Using the Geographically Weighted Regression (GWR) Method to Find Out the Factors Causing Poverty in North Sumatra Province. International Journal of Science and Mathematics Education, 1(1), 18–28. https://doi.org/10.62951/ijsme.v1i1.13

Farouk, A. U., Lasisi, K. E., Mohammed, A., & Lawan, A. M. (2023). The Impact of Using Robust MM-Estimator in Regression Models: An Application of Nigerian Inflation on the Economic Growth. Journal of Science and Applied Research, 5(2), 66–74.

Hermalia, H., & Rini, D. S. (2023). Pemodelan Persentase Balita Stunting di Indonesia Tahun 2021 dengan Metode Mixed Geographically Weighted Regression (MGWR). Journal of Scientech Research and Development, 5(2), 780–790. https://doi.org/10.56670/jsrd.v5i2.249

Ibrahim, A., Dike, I. J., & Badawaire, A. B. (2022). Comparative Study of Some Estimators of Linear Regression Models in the Presence of Outliers. FUDMA Journal of Sciences, 6(1), 368–376. https://doi.org/10.33003/fjs-2022-0601-908

Kalina, J., & Tichavsky, J. (2020). On Robust Estimation of Error Variance in (Highly) Robust Regression. Measurement Science Review, 20(1), 6–14. https://doi.org/10.2478/msr-2020-0002

Kannan, K. S., & Manoj, K. (2015). Outlier detection in multivariate data. Applied Mathematical Sciences, 9(47), 2317–2324. https://doi.org/10.12988/ams.2015.53213

Ozdemir, S., & Arslan, O. (2022). Combining empirical likelihood and robust estimation methods for linear regression models. Communications in Statistics - Simulation and Computation, 51(3), 941–954. https://doi.org/10.1080/03610918.2019.1659968

Prahutama, A., & Rusgiyono, A. (2021). Robust regression with MM-estimator for modelling the number maternal mortality of pregnancy in Central Java, Indonesia. Journal of Physics: Conference Series, 1943(1), 012148. https://doi.org/10.1088/1742-6596/1943/1/012148

Rahmah, A. A., Sulvianti, I. D., Suhaeni, C., & Djaafara, B. A. (2020). Pemodelan Faktor Risiko Penyakit Campak pada Balita di Provinsi DKI Jakarta: Pemodelan Faktor Risiko Penyakit Campak pada Balita di Provinsi DKI Jakarta. Xplore: Journal of Statistics, 9(1), 1–11. https://doi.org/10.29244/xplore.v9i1.158

Shabrina, Z., Buyuklieva, B., & Ng, M. K. M. (2021). Short-Term Rental Platform in the Urban Tourism Context: A Geographically Weighted Regression (GWR) and a Multiscale GWR (MGWR) Approaches. Geographical Analysis, 53(4), 686–707. https://doi.org/10.1111/gean.12259

Shen, Y., & Tao, Y. (2022). Associations between spatial access to medical facilities and health-seeking behaviors: A mixed geographically weighted regression analysis in Shanghai, China. Applied Geography, 139, 102644. https://doi.org/10.1016/j.apgeog.2022.102644

Singgih, M. N. A., & Fauzan, A. (2022). Comparison of M Estimation, S Estimation, with MM Estimation to Get the Best Estimation of Robust Regression in Criminal Cases in Indonesia. Jurnal Matematika, Statistika dan Komputasi, 18(2), 251–260. https://doi.org/10.20956/j.v18i2.18630

Syam, U. A., Siswanto, S., & Sunusi, N. (2024). Robust spatial Durbin modelling on tuberculosis data using the MM-estimator method. Statistics in Transition new series, 25(2), 23–38. https://doi.org/10.59170/stattrans-2024-013

Tirink, C., & Onder, H. (2022). Comparison of M, MM and LTS estimators in linear regression in the presence of outlier. Turkish Journal of Veterinary & Animal Sciences, 46(3), 420–428. https://doi.org/10.55730/1300-0128.4212

Yang, H., Xu, T., Chen, D., Yang, H., & Pu, L. (2020). Direct modeling of subway ridership at the station level: A study based on mixed geographically weighted regression. Canadian Journal of Civil Engineering, 47(5), 534–545. https://doi.org/10.1139/cjce-2018-0727

Zhang, S., Wang, L., & Lu, F. (2019). Exploring Housing Rent by Mixed Geographically Weighted Regression: A Case Study in Nanjing. ISPRS International Journal of Geo-Information, 8(10), 431. https://doi.org/10.3390/ijgi8100431

Downloads

Published

2025-10-31

Issue

Section

Articles

How to Cite

[1]
“Mixed Geographically Weighted Regression Modeling Using the MM-Estimator Method on Data of Poverty”, JV, vol. 8, no. 3, pp. 293–306, Oct. 2025, doi: 10.30812/varian.v8i3.5146.