Rainfall Forecasting Using the Singular Spectrum Analysis (SSA) Method

Authors

  • Nurhikmawati Nurhikmawati Universitas Negeri Makassar, Makassar, Indonesia
  • Aswi Aswi Universitas Negeri Makassar, Makassar, Indonesia
  • Ansari Saleh Ahmar Universitas Negeri Makassar, Makassar, Indonesia

DOI:

https://doi.org/10.30812/varian.v8i2.4571

Keywords:

Forcasting, Rainfall, Singular Spectrum Analysis

Abstract

This study aims to evaluate the accuracy and performance of rainfall data forecasting in the city of Parepare using the Singular Spectrum Analysis (SSA) method. Situated in South Sulawesi Province, Parepare City is characterized by high rainfall intensity, which increases the likelihood of natural hazards such as flooding and landslides. These disasters have the potential to negatively impact key sectors, including economic activity, tourism, and transportation. Therefore, reliable rainfall prediction plays a crucial role in establishing a robust disaster early warning system. Monthly rainfall measurements from two stations, Bukit Harapan and Bulu Dua, are analyzed. The results reveal a Root Mean Square Error (RMSE) of 191.0566 for Bukit Harapan station and 346.023 for Bulu Dua station, underscoring the method's forecasting accuracy. A 12-month forecast predicts consistently high monthly rainfall in Parepare City, with the highest rainfall expected in December 2024 at Bukit Harapan station and in January 2024 at Bulu Dua station. Conversely, the lowest rainfall at both stations is anticipated in July 2024. Forecasts predicting increased rainfall during certain periods, especially in December and January, provide critical insights for strengthening disaster preparedness and informing mitigation strategies. This information also plays a key role in minimizing adverse effects on the economic, transportation, and tourism sectors, while promoting more efficient and sustainable management of water resources.

 

Downloads

Download data is not yet available.

References

Aditya Pratama, M., Munawaroh, M., Joko Pranoto, W., Studi Teknik Informatika, P., Sains dan Teknologi, F., & Muhammadiyah

Kalimantan Timur, U. (2024). Perbandingan Performa Algoritma Linear Regresi dan Random Forest untuk Prediksi Harga

Bawang Merah di Kota Samarinda. Jurnal Ilmu Teknik, 1(2), 172–182.

Agustina, S., Fitri, F., Vionanda, D., & Salma, A. (2023). Rainfall Forcasting in Medan City Using Singular Spectrum Analysis

(SSA). UNP Journal of Statistics and Data Science, 1(3), 149–156. https://doi.org/10.24036/ujsds/vol1-iss3/52

Ajr, E. Q., & Dwirani, F. (2019). Menentukan Stasiun Hujan dan Curah Hujan dengan Metode Polygon Thiessen Daerah Kabupaten

Lebak. Jurnal Lingkungan dan Sumber Daya Alam (JURNALIS), 2(2), 139–146.

Asrof, A., Ischak, R., & Darmawan, G. (2017). Peramalan Produksi Cabai Merah di Jawa Barat Menggunakan Metode Singular

Spectrum Analysis (SSA). STATISTIKA: Journal of Theoretical Statistics and Its Applications, 17(2), 77–87. https:

//doi.org/10.29313/jstat.v17i2.2839

Aswi & Sukarna. (2006). Analisis Deret Waktu: Teori dan Aplikasi (Edisi Pert). Andira Publisher.

Badri, A. A. A., Nandarie, A. C. A., & Haryanto, Y. D. (2023). Optimasi Model ARIMA dalam Prakiraan Curah Hujan di Jambi.

Gographia : Jurnal Pendidikan dan Penelitian Geografi, 4(1), 39–43. https://doi.org/10.53682/gjppg.v4i1.5776

Darmawan, G. (2016). Identifikasi Pola Data Curah Hujan pada Proses Grouping dalam Metode Singular Spectrum Analysis. Seminar

Nasional Pendidikan Matematika 2016, 1–9.

Golyandina, N., & Zhigljavsky, A. (2020). Singular Spectrum Analysis for Time Series (Second). Springer Berlin, Heidelberg.

https://doi.org/https://doi.org/10.1007/978-3-662-62436-4

Hidayat, K. W., Wahyuningsih, S., & Nasution, Y. N. (2020). Pemodelan Jumlah Titik Panas di Provinsi Kalimantan Timur dengan

Metode Singular Spectrum Analysis. Jambura Journal of Probability and Statistics, 1(2), 78–88. https://doi.org/10.

34312/jjps.v1i2.7287

Kusumawardhani, Ismi, D., & Gernowo, R. (2015). Analisis Perubahan Iklim berbagai Variabilitas Curah Hujan dan Emisi Gas

Metana (CH4) dengan Metode Grid Analysis and Display System (GrADS) di Kabupaten Semarang. Youngster Physic

Journal, 4(1), 49–54.

Lubis, D. A., Johra, M. B., & Darmawan, G. (2017). Peramalan Indeks Harga Konsumen dengan Metode Singular Spectral Analysis

(SSA) dan Seasonal Autoregressive Integrated Moving Average (SARIMA). Jurnal Matematika ”MANTIK”, 3(2), 74–

82. https://doi.org/10.15642/mantik.2017.3.2.74-82

Manuaba, I. D. N. A., Manuaba, I. B. G., & Sudarma, M. (2022). Komparasi Metode Peramalan Grey dan Grey-Markov untuk

mengetahui Peramalan PNBP di Universitas Udayana. Majalah Ilmiah Teknologi Elektro, 21(1), 83–88. https://doi.org/

10.24843/mite.2022.v21i01.p12

Marjuni, A. (2022). Peramalan Harga Saham Serentak Menggunakan Model Multivariate Singular Spectrum Analysis. Jurnal Sistem

Informasi Bisnis, 12(1), 17–25. https://doi.org/10.21456/vol12iss1pp17-25

Maulana, M. I., & Yustiana, F. (2023). Analisis Kuantitatif dan Variabilitas Curah Hujan dengan Klasifikasi Iklim Mohr di Kota

Padang. FTSP Series: Seminar Nasional dan Diseminasi Tugas Akhir 2023, 157–162.

Purnama, E. (2022). Aplikasi Metode Singular Spectrum Analysis (SSA) pada Peramalan Curah Hujan di Provinsi Gorontalo. Jambura

Journal of Probability and Statistics, 3(2), 161–170.

Sergio, A., Wahyuningsih, S., & Siringoringo, M. (2023). Peramalan Inflasi Kota Balikpapan Menggunakan Metode Singular Spectrum

Analysis. Jurnal EKSPONENSIAL, 14(1), 21–30.

Setiawan, D. A., Wahyuningsih, S., & Goejantoro, R. (2019). Peramalan Produksi Kelapa Sawit Menggunakan Winter’s dan Pegel’s

Exponential Smoothing dengan Pemantauan Tracking Signal. Jambura Journal of Mathematics, 2(1), 1–14. https://doi.

org/10.34312/jjom.v2i1.2320

Suhadi, Mabruroh, F., Wiyanto, A., & Ikra. (2023). Analisis Fenomena Perubahan Iklim Terhadap Curah Hujan Ekstrim. OPTIKA:

Jurnal Pendidikan Fisika, 7(1), 94–100.

Utami, N. A. G., Sulandari, W., & Handajani, S. S. (2021). Peramalan Curah Hujan Bulanan Di Pos Hujan Jatisrono Dengan Metode

Singular Spectrum Analysis (SSA). Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST).

Zulhijrah, Isnaini, M., Sulastri, S., Zalza, & Aswi Aswi. (2023). Dampak Covid-19 terhadap Tingkat Inflasi di Indonesia. Jurnal

Matematika dan Statistika serta Aplikasinya, 11(2), 57–63.

Downloads

Published

2025-07-31

Issue

Section

Articles

How to Cite

[1]
“Rainfall Forecasting Using the Singular Spectrum Analysis (SSA) Method”, JV, vol. 8, no. 2, pp. 233–248, Jul. 2025, doi: 10.30812/varian.v8i2.4571.

Most read articles by the same author(s)