Exploring Crime Problems from A Statistical Point of View with Negative Binomial Regression
DOI:
https://doi.org/10.30812/varian.v8i2.4445Keywords:
Criminality, Negative Binomial Regression, OverdispersionAbstract
Criminality is a complex issue in Indonesia that is very important to the government, law enforcement agencies, and society. The underlying causes of Indonesia's crime problem are complex and impacted by various circumstances. The aim of this research is to model the crime problem in Indonesia and determine the influencing factors. The method used in this research is Negative Binomial Regression. The results of the study show that the negative binomial regression model can be used to model criminal problems because the variance value is more significant than the average. Based on the parameter significance test results, both simultaneously and partially, the open unemployment rate, Gini ratio, average years of schooling, and prevalence of inadequate food consumption significantly affect the crime rate, with an Akaike’s Information Criterion Corrected (AICc) value of 698,098. These findings suggest that addressing economic inequality, unemployment, education, and food security could help reduce crime in Indonesia. Policies aimed at improving job opportunities, reducing income disparity, and enhancing education and food security are crucial in mitigating crime. This study provides valuable insights for policymakers and law enforcement agencies, offering a foundation for more targeted and effective crime prevention strategies. Future research could employ the robust Poisson Inverse Gaussian Regression method to avoid the overdispersion problem.
Downloads
References
Alem, A. Z., Tegegne, B. A., Aragaw, F. M., Teklu, R. E., & Baykeda, T. A. (2024). Multilevel negative binomial analysis of
factors associated with numbers of antenatal care contacts in low and middle income countries: Findings from 59 nationally
representative datasets (M. Nair, Ed.). PLOS ONE, 19(4), e0301542. https://doi.org/10.1371/journal.pone.0301542
Badan Pusat Statistik. (2024). Statistik Kriminalitas Indonesia 2023.
Coshall, J., & Hardle,W. (1993). Applied Nonparametric Regression. The Statistician, 42(2), 195. https://doi.org/10.2307/2348990
Dani, A. T. R., Ni’matuzzahroh, L., Ratnasari, V., & Budiantara, I. N. (2021). Pemodelan Regresi Nonparametrik Spline Truncated
pada Data Longitudinal. Inferensi, 4(1), 47. https://doi.org/10.12962/j27213862.v4i1.8737
Fathurahman, M. (2022). Regresi Binomial Negatif untuk Memodelkan Kematian Bayi di Kalimantan Timur. Eksponensial, 13(1),
79. https://doi.org/10.30872/eksponensial.v13i1.888
Fatmala, C. T., Hayati, M., Permatasari, R., Hudori, M., & Dalimunthe, D. Y. (2024). Pemodelan Jumlah Kasus HIV/AIDS di Provinsi
Lampung Menggunakan Regresi Binomial Negatif. Journal of Mathematics: Theory and Applications, 6(2), 168–177.
https://doi.org/10.31605/jomta.v6i2.4069
Fitrial, N. H., & Fatikhurrizqi, A. (2021). Pemodelan Jumlah Kasus COVID-19 di Indonesia Dengan Pendekatan Regresi Poisson dan
Regresi Binomial Negatif. Seminar Nasional Official Statistics, 2020(1), 65–72. https://doi.org/10.34123/semnasoffstat.
v2020i1.465
˙Iyit, N., & Sevim, F. (2023). A novel statistical modeling of air pollution and the COVID-19 pandemic mortality data by Poisson,
geometric, and negative binomial regression models with fixed and random effects. Open Chemistry, 21(1), 1–15. https:
//doi.org/10.1515/chem-2023-0364
Jhwueng, D.-C., & Wu, C.-Y. (2023). A Novel Phylogenetic Negative Binomial Regression Model for Count-Dependent Variables.
Biology, 12(8), 1148. https://doi.org/10.3390/biology12081148
Kang, K. I., Kang, K., & Kim, C. (2021). Risk Factors Influencing Cyberbullying Perpetration among Middle School Students in
Korea: Analysis Using the Zero-Inflated Negative Binomial Regression Model. International Journal of Environmental
Research and Public Health, 18(5), 2224. https://doi.org/10.3390/ijerph18052224
Keswari, N. M. R., Sumarjaya, I.W., & Suciptawati, N. L. P. (2014). Perbandingan Regresi Binomial Negatif dan Regresi Generalisasi
Poisson dalam Mengatasi Overdispersi (Studi Kasus: Jumlah Tenaga Kerja Usaha Pencetak Genteng di BR. Dukuh, Desa
Pejaten). E-Jurnal Matematika, 3(3), 107. https://doi.org/10.24843/mtk.2014.v03.i03.p072
Khattak, M. W., De Backer, H., De Winne, P., Brijs, T., & Pirdavani, A. (2024). Comparative Evaluation of Crash Hotspot Identification
Methods: Empirical Bayes vs. Potential for Safety Improvement Using Variants of Negative Binomial Models.
Sustainability, 16(4), 1537. https://doi.org/10.3390/su16041537
Manurung, B. L., Priharyanto, T., & Alifah, U. (2024). Pemodelan Jumlah Kekerasan Terhadap Perempuan di Jawa Timur dengan
Regresi Poisson dan Binomial Negatif. JSN : Jurnal Sains Natural, 2(3), 68–77. https://doi.org/10.35746/jsn.v2i3.547
Nurferyanto, D., & Takahashi, Y. (2024). Establishing Boundaries to Combat Tax Crimes in Indonesia. Laws, 13(3), 29. https :
//doi.org/10.3390/laws13030029
Ramadan, A., Chamidah, N., & Budiantara, I. N. (2024). Modelling the number of HIV cases in Indonesia using negative binomial
regression based on least square spline estimator. Communications in Mathematical Biology and Neuroscience, 2024,
1–16. https://doi.org/10.28919/cmbn/8582
Sauddin, A., Auliah, N. I., & Alwi, W. (2020). Pemodelan Jumlah Kematian Ibu di Provinsi Sulawesi Selatan Menggunakan Regresi
Binomial Negatif. Jurnal MSA ( Matematika dan Statistika serta Aplikasinya ), 8(2), 42. https://doi.org/10.24252/
msa.v8i2.17409
Stoklosa, J., Blakey, R. V., & Hui, F. K. C. (2022). An Overview of Modern Applications of Negative Binomial Modelling in Ecology
and Biodiversity. Diversity, 14(5), 320. https://doi.org/10.3390/d14050320
Sugiharti, L., Purwono, R., Esquivias, M. A., & Rohmawati, H. (2023). The Nexus between Crime Rates, Poverty, and Income
Inequality: A Case Study of Indonesia. Economies, 11(2), 62. https://doi.org/10.3390/economies11020062
Suparti, S., Warsito, B., Santoso, R., Yasin, H., Caraka, R. E., & Sudargo, S. (2020). Biresponses Kernel Nonparametric Regression:
Inflation and Economic Growth. International Journal of Criminology and Sociology, 10, 465–471. https://doi.org/10.
6000/1929-4409.2021.10.54
Widyaningsih, Y., Arum, G. P., & Prawira, K. (2021). Aplikasi K-Fold Cross Validation dalam Penentuan Model Regresi Binomial
Negatif Terbaik. BAREKENG: Jurnal Ilmu Matematika dan Terapan, 15(2), 315–322. https : / / doi . org / 10 . 30598 /
barekengvol15iss2pp315-322
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Andrea Tri Rian Dani, M. Fathurahman, Ludia Ni'matuzzahroh, Regita Putri Permata; Fachrian Bimantoro Putra

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Most read articles by the same author(s)
- M. Fathurahman, Pemodelan Indeks Pembangunan Kesehatan Masyarakat Kabupaten/Kota di Pulau Kalimantan Menggunakan Pendekatan Regresi Probit , Jurnal Varian: Vol. 2 No. 2 (2019)
- Regita Putri Permata, Rifdatun Ni'mah, Andrea Tri Rian Dani, Daily Rainfall Forecasting with ARIMA Exogenous Variables and Support Vector Regression , Jurnal Varian: Vol. 7 No. 2 (2024)
- Julia Oriana Sinaga, M. Fathurahman, Sri Wahyuningsih, Memi Nor Hayati, Evaluating Different K Values in K-Fold Cross Validation for Binary Logistic Regression to Classify Poverty , Jurnal Varian: Vol. 8 No. 2 (2025)