Exploring Crime Problems from A Statistical Point of View with Negative Binomial Regression

Authors

  • Andrea Tri Rian Dani Universitas Mulawarman, Samarinda, Indonesia
  • M. Fathurahman Universitas Mulawarman, Samarinda, Indonesia
  • Ludia Ni'matuzzahroh Politeknik Perkapalan Negeri Surabaya, Surabaya, Indonesia
  • Regita Putri Permata Universitas Telkom, Surabaya, Indonesia
  • Fachrian Bimantoro Putra Universitas Mulawarman, Kalimantan Timur, Indonesia

DOI:

https://doi.org/10.30812/varian.v8i2.4445

Keywords:

Criminality, Negative Binomial Regression, Overdispersion

Abstract

Criminality is a complex issue in Indonesia that is very important to the government, law enforcement agencies, and society. The underlying causes of Indonesia's crime problem are complex and impacted by various circumstances. The aim of this research is to model the crime problem in Indonesia and determine the influencing factors.  The method used in this research is Negative Binomial Regression. The results of the study show that the negative binomial regression model can be used to model criminal problems because the variance value is more significant than the average. Based on the parameter significance test results, both simultaneously and partially, the open unemployment rate, Gini ratio, average years of schooling, and prevalence of inadequate food consumption significantly affect the crime rate, with an Akaike’s Information Criterion Corrected (AICc) value of 698,098. These findings suggest that addressing economic inequality, unemployment, education, and food security could help reduce crime in Indonesia. Policies aimed at improving job opportunities, reducing income disparity, and enhancing education and food security are crucial in mitigating crime. This study provides valuable insights for policymakers and law enforcement agencies, offering a foundation for more targeted and effective crime prevention strategies. Future research could employ the robust Poisson Inverse Gaussian Regression method to avoid the overdispersion problem. 

Downloads

Download data is not yet available.

References

Alem, A. Z., Tegegne, B. A., Aragaw, F. M., Teklu, R. E., & Baykeda, T. A. (2024). Multilevel negative binomial analysis of

factors associated with numbers of antenatal care contacts in low and middle income countries: Findings from 59 nationally

representative datasets (M. Nair, Ed.). PLOS ONE, 19(4), e0301542. https://doi.org/10.1371/journal.pone.0301542

Badan Pusat Statistik. (2024). Statistik Kriminalitas Indonesia 2023.

Coshall, J., & Hardle,W. (1993). Applied Nonparametric Regression. The Statistician, 42(2), 195. https://doi.org/10.2307/2348990

Dani, A. T. R., Ni’matuzzahroh, L., Ratnasari, V., & Budiantara, I. N. (2021). Pemodelan Regresi Nonparametrik Spline Truncated

pada Data Longitudinal. Inferensi, 4(1), 47. https://doi.org/10.12962/j27213862.v4i1.8737

Fathurahman, M. (2022). Regresi Binomial Negatif untuk Memodelkan Kematian Bayi di Kalimantan Timur. Eksponensial, 13(1),

79. https://doi.org/10.30872/eksponensial.v13i1.888

Fatmala, C. T., Hayati, M., Permatasari, R., Hudori, M., & Dalimunthe, D. Y. (2024). Pemodelan Jumlah Kasus HIV/AIDS di Provinsi

Lampung Menggunakan Regresi Binomial Negatif. Journal of Mathematics: Theory and Applications, 6(2), 168–177.

https://doi.org/10.31605/jomta.v6i2.4069

Fitrial, N. H., & Fatikhurrizqi, A. (2021). Pemodelan Jumlah Kasus COVID-19 di Indonesia Dengan Pendekatan Regresi Poisson dan

Regresi Binomial Negatif. Seminar Nasional Official Statistics, 2020(1), 65–72. https://doi.org/10.34123/semnasoffstat.

v2020i1.465

˙Iyit, N., & Sevim, F. (2023). A novel statistical modeling of air pollution and the COVID-19 pandemic mortality data by Poisson,

geometric, and negative binomial regression models with fixed and random effects. Open Chemistry, 21(1), 1–15. https:

//doi.org/10.1515/chem-2023-0364

Jhwueng, D.-C., & Wu, C.-Y. (2023). A Novel Phylogenetic Negative Binomial Regression Model for Count-Dependent Variables.

Biology, 12(8), 1148. https://doi.org/10.3390/biology12081148

Kang, K. I., Kang, K., & Kim, C. (2021). Risk Factors Influencing Cyberbullying Perpetration among Middle School Students in

Korea: Analysis Using the Zero-Inflated Negative Binomial Regression Model. International Journal of Environmental

Research and Public Health, 18(5), 2224. https://doi.org/10.3390/ijerph18052224

Keswari, N. M. R., Sumarjaya, I.W., & Suciptawati, N. L. P. (2014). Perbandingan Regresi Binomial Negatif dan Regresi Generalisasi

Poisson dalam Mengatasi Overdispersi (Studi Kasus: Jumlah Tenaga Kerja Usaha Pencetak Genteng di BR. Dukuh, Desa

Pejaten). E-Jurnal Matematika, 3(3), 107. https://doi.org/10.24843/mtk.2014.v03.i03.p072

Khattak, M. W., De Backer, H., De Winne, P., Brijs, T., & Pirdavani, A. (2024). Comparative Evaluation of Crash Hotspot Identification

Methods: Empirical Bayes vs. Potential for Safety Improvement Using Variants of Negative Binomial Models.

Sustainability, 16(4), 1537. https://doi.org/10.3390/su16041537

Manurung, B. L., Priharyanto, T., & Alifah, U. (2024). Pemodelan Jumlah Kekerasan Terhadap Perempuan di Jawa Timur dengan

Regresi Poisson dan Binomial Negatif. JSN : Jurnal Sains Natural, 2(3), 68–77. https://doi.org/10.35746/jsn.v2i3.547

Nurferyanto, D., & Takahashi, Y. (2024). Establishing Boundaries to Combat Tax Crimes in Indonesia. Laws, 13(3), 29. https :

//doi.org/10.3390/laws13030029

Ramadan, A., Chamidah, N., & Budiantara, I. N. (2024). Modelling the number of HIV cases in Indonesia using negative binomial

regression based on least square spline estimator. Communications in Mathematical Biology and Neuroscience, 2024,

1–16. https://doi.org/10.28919/cmbn/8582

Sauddin, A., Auliah, N. I., & Alwi, W. (2020). Pemodelan Jumlah Kematian Ibu di Provinsi Sulawesi Selatan Menggunakan Regresi

Binomial Negatif. Jurnal MSA ( Matematika dan Statistika serta Aplikasinya ), 8(2), 42. https://doi.org/10.24252/

msa.v8i2.17409

Stoklosa, J., Blakey, R. V., & Hui, F. K. C. (2022). An Overview of Modern Applications of Negative Binomial Modelling in Ecology

and Biodiversity. Diversity, 14(5), 320. https://doi.org/10.3390/d14050320

Sugiharti, L., Purwono, R., Esquivias, M. A., & Rohmawati, H. (2023). The Nexus between Crime Rates, Poverty, and Income

Inequality: A Case Study of Indonesia. Economies, 11(2), 62. https://doi.org/10.3390/economies11020062

Suparti, S., Warsito, B., Santoso, R., Yasin, H., Caraka, R. E., & Sudargo, S. (2020). Biresponses Kernel Nonparametric Regression:

Inflation and Economic Growth. International Journal of Criminology and Sociology, 10, 465–471. https://doi.org/10.

6000/1929-4409.2021.10.54

Widyaningsih, Y., Arum, G. P., & Prawira, K. (2021). Aplikasi K-Fold Cross Validation dalam Penentuan Model Regresi Binomial

Negatif Terbaik. BAREKENG: Jurnal Ilmu Matematika dan Terapan, 15(2), 315–322. https : / / doi . org / 10 . 30598 /

barekengvol15iss2pp315-322

Downloads

Published

2025-07-31

Issue

Section

Articles

How to Cite

[1]
“Exploring Crime Problems from A Statistical Point of View with Negative Binomial Regression”, JV, vol. 8, no. 2, pp. 199–208, Jul. 2025, doi: 10.30812/varian.v8i2.4445.