Analysis of Gold Price Forecasts Using Automatic Clustering Method and Fuzzy Logic Relationship

Authors

  • Ro'i Khatul Jannah Universitas Negeri Padang, Padang, Indonesia
  • Dina Agustina Universitas Negeri Padang, Padang, Indonesia

DOI:

https://doi.org/10.30812/varian.v8i2.4382

Keywords:

ACFLR, Forecasting, Fuzzy Time Series, Gold, MAPE

Abstract

Gold is often chosen as an investment due to its lucrative potential. To maximize profits and avoid losses, investors need to understand the volatile price movements of gold. This research aims to forecast the price of gold in the next period. In this research, the forecasting method used is Automatic Clustering and Fuzzy Logical Relationship (ACFLR). ACFLR is a method that uses the concept of fuzzy logic for modeling time series data. The forecasting process includes data sorting, cluster formation, interval determination, fuzzification, FLR and FLRG formation, and calculation of forecasting values. Based on this method, the result of the gold price forecast in Padang City for the next period, namely January 2024 using the ACFLR method is IDR 978,796.9. with a MAPE value of 0.9%, which means this method is very good. For further researchers, it is hoped that the Fuzzy Time Series method can use other forecasting models in order to obtain the most optimal method for forecasting gold prices.

Downloads

Download data is not yet available.

References

Abdy, M., Syam, R., & Haryanensi, E. (2019). Metode Automatic clustering-fuzzy logical relationships pada Peramalan Jumlah

Penduduk di Kota Makassar. Journal of Mathematics, Computations, and Statistics, 1(2), 193. https : / /doi. org/10.

35580/jmathcos.v1i2.9242

Dewi, D. M., Nafi’, M. Z., & Nasrudin, N. (2022). Analisis Peramalan Harga Emas di Indonesia pada Masa Pandemi COVID-19

Untuk Investasi. Jurnal Litbang Sukowati : Media Penelitian dan Pengembangan, 5(2), 38–50. https://doi.org/10.

32630/sukowati.v5i2.235

Endaryati, B., & Kurniawan, R. (2015). Komparasi Metode Peramalan Automatic Clustering Technique and Fuzzy Logical Relationships

dengan Single Exponential Smoothing. MEDIA STATISTIKA, 8(2), 93–101. https://doi.org/10.14710/medstat.8.2.

93-101

Ikhsanto, H. T. I. H. T., Sugiman, S., & Hendikawati, P. (2018). Perbandingan Tingkat Akurasi Metode Automatic Clustering, Average

Based, dan Markov Chain Fuzzy Time Series pada Nilai Tukar (Kurs) Rupiah. Unnes Journal of Mathematics, 7(1), 66–

82. https://doi.org/10.15294/ujm.v7i1.12574

Inayah, I. N. (2020). Prinsip-Prinsip Ekonomi Islam dalam Investasi Syariah. AKSY: Jurnal Ilmu Akuntansi dan Bisnis Syariah,

2(2), 88–100. https://doi.org/10.15575/aksy.v2i2.9801

John, D. R., & Latupeirissa, S. J. (2021). Peramalan Harga Emas di Indonesia Tahun 2014-2019 dengan Metode Arima Box-Jenkins.

VARIANCE: Journal of Statistics and Its Applications, 2(2), 53–62. https://doi.org/10.30598/variancevol2iss2page53-

62

Kim, S., & Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of

Forecasting, 32(3), 669–679. https://doi.org/10.1016/j.ijforecast.2015.12.003

Liu, H., & Wang, G. (2015). Relative Motion between St. Croix and the Puerto Rico-Northern Virgin Islands Block Derived from

Continuous GPS Observations (1995–2014). International Journal of Geophysics, 2015, 1–9. https://doi.org/10.1155/

2015/915753

Nabillah, I., & Ranggadara, I. (2020). Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut. JOINS

(Journal of Information System), 5(2), 250–255. https://doi.org/10.33633/joins.v5i2.3900

Nudia, D. (2022). Emas sebagai Instrumen Investasi Jangka Panjang. Shar-E : Jurnal Kajian Ekonomi Hukum Syariah, 8(1),

177–187. https://doi.org/10.37567/shar-e.v8i1.1297

Pratama, Y. A., & Indriani, D. (2018). Peramalan KB Baru IUD dengan Metode Automatic Clustering and Fuzzy Logical Relationship.

Jurnal Biometrika dan Kependudukan, 6(2), 144. https://doi.org/10.20473/jbk.v6i2.2017.144-153

Pratiwi, A. M., Musdalifah, S., & Lusiyanti, D. (2021). Peramalan Harga Emas Menggunakan Metode Average Based and Fuzzy

Logic Relationship. Jurnal Ilmiah Matematika dan Terapan, 18(2), 230–242. https://doi.org/10.22487/2540766X.2021.

v18.i2.15712

Putra, M. B. E., & Rivandi, M. (2018, December 11). Pengaruh Pendapatan, Harga Emas dan Tingkat Inflasi terhadap

Penyaluran Kredit di Pegadaian Cabang Padang. https://doi.org/10.31227/osf.io/wsbj6

Ramadhani, A. P., Septyasari, I. A., Hasannah, F. N., & Kustiawati, D. (2022). Investasi Ditinjau dari Perspektif Ekonomi dan

Ekonomi Islam. Jurnal Indonesia Sosial Sains, 3(12), 1579–1589. https://doi.org/10.36418/jiss.v3i12.746

Setiyono, T. A., Ghassani, H., & Dewi, S. (2022). Determinan COVID-19 terhadap Harga Emas. Jurnal STIE Semarang (Edisi

Elektronik), 14(1), 107–116. https://jurnal3.stiesemarang.ac.id/index.php/jurnal/article/view/538

Sitohang, S. (2018). Analisis Peramalan Harga Emas dengan Metode Automatic Clustering and Fuzzy Logic Relationship. Journal

Information System Development (ISD), 3(2), 104–115. https://ejournal-medan.uph.edu/isd/article/view/209

Downloads

Published

2025-07-31

Issue

Section

Articles

How to Cite

[1]
“Analysis of Gold Price Forecasts Using Automatic Clustering Method and Fuzzy Logic Relationship”, JV, vol. 8, no. 2, pp. 165–178, Jul. 2025, doi: 10.30812/varian.v8i2.4382.