Deterministic Economic Resilience Through Gross Regional Domestic Product Using Nonparametric Geographically Weighted Regression Spline Truncated
DOI:
https://doi.org/10.30812/varian.v8i2.4303Keywords:
GDRP, NGWRTSR, Nonparametric, SpatialAbstract
Megatrends are large-scale global movements with huge impacts, influenced by socio-economic, political, ecological and technological factors. As a developing country, Indonesia faces challenges such as political instability and limited infrastructure, so strengthening economic resilience through increasing Gross Regional Domestic Product (GRDP) is important. The aim of this research is to analyze Indonesia's GRDP data in 2022, which shows significant spatial variability between provinces to see the resilience of the Indonesian economy. The method used is Nonparametric Geographically Weighted Regression - Spline Truncated (NGWR-ST). The NGWR-ST approach is well suited because it allows location-specific parameter variations, captures complex nonlinear relationships through spline functions, and minimizes the influence of extreme values using truncation. The results indicate that an optimal model is achieved with two knot points (GCV = 0.293) and a fixed kernel bi-square weighting function with a 19.174 bandwidth (CV = 974.621), providing optimal spatial weighting. Among the factors analyzed, the Human Development Index (HDI) and the Rate of Return (ROR) are identified as having a significant influence on GRDP, contributing insights for strengthening Indonesia’s economic resilience. Thus, this study will contribute to formulating appropriate regional policy strategies to strengthen the economy in facing the World Megatrend in 2045
Downloads
References
Appiah, E. K., Aidoo, E. N., Avuglah, R. K., & Appiah, S. K. (2024). Geographically weighted logistic regression model for identifying
risk factors for malaria infection among under-5 children in Ghana. Scientific African, 26, e02398. https://doi.org/
10.1016/j.sciaf.2024.e02398
Bappeda. (2021). Kondisi Ekonomi Provinsi Dan Kabupaten/Kota. Retrieved July 3, 2023, from https://bappedajateng.com/
Bash, C., Faraboschi, P., Frachtenberg, E., Laplante, P., Milojicic, D., & Saracco, R. (2023). Megatrends. Computer, 56(7), 93–100.
https://doi.org/10.1109/MC.2023.3271428
Citra, V. G., Walewangko, E. N., & Maramis, M. T. B. (2023). Pengaruh Sektor Pariwisata Terhadap Produk Domestik Regional
Bruto (PDRB) di Sulawesi Utara. Jurnal Berkala Ilmiah Efisiensi, 23(3), 109–120. https://ejournal.unsrat.ac.id/v3/index.
php/jbie/article/view/46652
Dabija, D.-C., Csorba, L. M., Isac, F.-L., & Rusu, S. (2023). Managing Sustainable Sharing Economy Platforms: A Stimulus–
Organism–Response Based Structural Equation Modelling on an Emerging Market. Sustainability, 15(6), 5583. https:
//doi.org/10.3390/su15065583
Dani, A. T. R., Ni’matuzzahroh, L., Ratnasari, V., & Budiantara, I. N. (2021). Pemodelan Regresi Nonparametrik Spline Truncated
pada Data Longitudinal. Inferensi, 4(1), 47. https://doi.org/10.12962/j27213862.v4i1.8737
Daulay, S. H., & Simamora, E. (2023). Pemodelan Faktor-Faktor Penyebab Kemiskinan di Provinsi Sumatera Utara Menggunakan
Metode GeographicallyWeighted Regression (GWR). Jurnal Riset Rumpun Matematika dan Ilmu Pengetahuan Alam,
2(1), 47–60. https://doi.org/10.55606/jurrimipa.v2i1.646
Fadli, M. R., Goejantoro, R., & Wasono, W. (2018). Pemodelan Geographically Weighted Regression (GWR) Dengan Fungsi Pembobot
Tricube Terhadap Angka Kematian Ibu (AKI) Di Kabupaten Kutai Kartanegara Tahun 2015. Eksponensial, 9(1),
11–18. Retrieved February 28, 2025, from https://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/209
Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2010). Geographically weighted regression: The analysis of spatially
varying relationships (Nachdr. der Ausg. 2002). Wiley.
Juarto, B. (2023). Breast Cancer Classification Using Outlier Detection and Variance Inflation Factor. Engineering, MAthematics
and Computer Science Journal (EMACS), 5(1), 17–23. https://doi.org/10.21512/emacsjournal.v5i1.9223
Mijayanti, T., & Helma, H. (2021). Bootstrap Aggregating Multivariate Adaptive Regression Splines (Bagging MARS) dan Penerapannya
pada Pemodelan Produk Domestik Regional Bruto (PDRB) di Provinsi Sumatera Barat. Journal of Mathematics
UNP, 6(4), 38–43. https://103.216.87.80/students/index.php/mat/article/view/12233
Novianto, A., Sriati, S., & Purnama, D. H. (2022). Resiliensi Ekonomi Kelompok Nelayan Perikanan Tangkap Kawasan Perkotaan.
Jurnal Sosiologi Andalas, 8(2), 115–129. https://doi.org/10.25077/jsa.8.2.115-129.2022
Nurhasanah, N.,Widiarti,W., Nurvazly, D. E., & Usman, M. (2024). Penerapan Model GeographicallyWeighted Logistic Regression
dengan Fungsi Pembobot Adaptive Gaussian Kernel pada Data Kemiskinan. Jambura Journal of Mathematics, 6(2), 204–
211. https://doi.org/10.37905/jjom.v6i2.26504
Pratiwi, L. P. S. (2020). Pemilihan Titik Knot Optimal Model Spline Truncated Dalam Regresi Nonparametrik Multivariabel dengan
GCV. Jurnal Matematika, 10(2), 78–90. https://doi.org/10.24843/JMAT.2020.v10.i02.p125
Purnaraga, T., Sifriyani, S., & Prangga, S. (2020). Regresi Nonparamaetrik Spline pada Data Laju Pertumbuhan Ekonomi di
Kalimantan. BAREKENG: Jurnal Ilmu Matematika dan Terapan, 14(3), 343–356. https : / / doi . org / 10 . 30598 /
barekengvol14iss3pp343-356
Putra, R., Fadhlurrahman, M. G., & Gunardi. (2023). Determination of the best knot and bandwidth in geographically weighted
truncated spline nonparametric regression using generalized cross validation. MethodsX, 10, 101994. https://doi.org/10.
1016/j.mex.2022.101994
Rahman, A. F., Syafriandi, S., Amalita, N., & Zilrahmi. (2023). Geographically Weighted Panel Regression Modeling on Human
Development Index in West Sumatra. UNP Journal of Statistics and Data Science, 1(3), 232–239. https://doi.org/10.
24036/ujsds/vol1-iss3/63
Serena, N., Sifriyani, S., & Darnah, D. (2021). Aplikasi Pendekatan Spline Truncated dalam Model GWR pada Pencemaran Daerah
Aliran Sungai Mahakam. MEDIA BINA ILMIAH, 16(2), 6439–6446. https://doi.org/10.33758/mbi.v16i2.1248
Sifriyani, Kartiko, S. H., Budiantara, I. N., & Gunardi. (2018). Development of nonparametric geographically weighted regression
using truncated spline approach. Songklanakarin Journal of Science and Technology, 40(4), 909–920. https://doi.org/
10.14456/sjst-psu.2018.98
Surenjani, D., Mursalini, W. I., & Yeni, A. (2023). Pengaruh Pertumbuhan Ekonomi dan Harga Saham Terhadap Pertumbuhan Laba
pada Perusahaan Pertambangan Sub Sektor Logam dan Mineral yang Terdaftar di Bursa Efek Indonesia. Jurnal Penelitian
Ekonomi Manajemen dan Bisnis, 2(1), 158–175. https://doi.org/10.55606/jekombis.v2i1.989
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nurul Mutiara Annisa, Dhita Hartanti Octavia, Muhammad Ridzky Davala

This work is licensed under a Creative Commons Attribution 4.0 International License.