Deterministic Economic Resilience Through Gross Regional Domestic Product Using Nonparametric Geographically Weighted Regression Spline Truncated

Authors

  • Nurul Mutiara Annisa Universitas Hasanuddin, Makassar, Indonesia
  • Dhita Hartanti Octavia Universitas Hasanuddin, Makassar, Indonesia
  • Muhammad Ridzky Davala Universitas Hasanuddin, Makassar, Indonesia

DOI:

https://doi.org/10.30812/varian.v8i2.4303

Keywords:

GDRP, NGWRTSR, Nonparametric, Spatial

Abstract

Megatrends are large-scale global movements with huge impacts, influenced by socio-economic, political, ecological and technological factors. As a developing country, Indonesia faces challenges such as political instability and limited infrastructure, so strengthening economic resilience through increasing Gross Regional Domestic Product (GRDP) is important. The aim of this research is to analyze Indonesia's GRDP data in 2022, which shows significant spatial variability between provinces to see the resilience of the Indonesian economy. The method used is Nonparametric Geographically Weighted Regression - Spline Truncated (NGWR-ST). The NGWR-ST approach is well suited because it allows location-specific parameter variations, captures complex nonlinear relationships through spline functions, and minimizes the influence of extreme values ​​using truncation. The results indicate that an optimal model is achieved with two knot points (GCV = 0.293) and a fixed kernel bi-square weighting function with a 19.174 bandwidth (CV = 974.621), providing optimal spatial weighting. Among the factors analyzed, the Human Development Index (HDI) and the Rate of Return (ROR) are identified as having a significant influence on GRDP, contributing insights for strengthening Indonesia’s economic resilience. Thus, this study will contribute to formulating appropriate regional policy strategies to strengthen the economy in facing the World Megatrend in 2045

 

Downloads

Download data is not yet available.

References

Appiah, E. K., Aidoo, E. N., Avuglah, R. K., & Appiah, S. K. (2024). Geographically weighted logistic regression model for identifying

risk factors for malaria infection among under-5 children in Ghana. Scientific African, 26, e02398. https://doi.org/

10.1016/j.sciaf.2024.e02398

Bappeda. (2021). Kondisi Ekonomi Provinsi Dan Kabupaten/Kota. Retrieved July 3, 2023, from https://bappedajateng.com/

Bash, C., Faraboschi, P., Frachtenberg, E., Laplante, P., Milojicic, D., & Saracco, R. (2023). Megatrends. Computer, 56(7), 93–100.

https://doi.org/10.1109/MC.2023.3271428

Citra, V. G., Walewangko, E. N., & Maramis, M. T. B. (2023). Pengaruh Sektor Pariwisata Terhadap Produk Domestik Regional

Bruto (PDRB) di Sulawesi Utara. Jurnal Berkala Ilmiah Efisiensi, 23(3), 109–120. https://ejournal.unsrat.ac.id/v3/index.

php/jbie/article/view/46652

Dabija, D.-C., Csorba, L. M., Isac, F.-L., & Rusu, S. (2023). Managing Sustainable Sharing Economy Platforms: A Stimulus–

Organism–Response Based Structural Equation Modelling on an Emerging Market. Sustainability, 15(6), 5583. https:

//doi.org/10.3390/su15065583

Dani, A. T. R., Ni’matuzzahroh, L., Ratnasari, V., & Budiantara, I. N. (2021). Pemodelan Regresi Nonparametrik Spline Truncated

pada Data Longitudinal. Inferensi, 4(1), 47. https://doi.org/10.12962/j27213862.v4i1.8737

Daulay, S. H., & Simamora, E. (2023). Pemodelan Faktor-Faktor Penyebab Kemiskinan di Provinsi Sumatera Utara Menggunakan

Metode GeographicallyWeighted Regression (GWR). Jurnal Riset Rumpun Matematika dan Ilmu Pengetahuan Alam,

2(1), 47–60. https://doi.org/10.55606/jurrimipa.v2i1.646

Fadli, M. R., Goejantoro, R., & Wasono, W. (2018). Pemodelan Geographically Weighted Regression (GWR) Dengan Fungsi Pembobot

Tricube Terhadap Angka Kematian Ibu (AKI) Di Kabupaten Kutai Kartanegara Tahun 2015. Eksponensial, 9(1),

11–18. Retrieved February 28, 2025, from https://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/209

Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2010). Geographically weighted regression: The analysis of spatially

varying relationships (Nachdr. der Ausg. 2002). Wiley.

Juarto, B. (2023). Breast Cancer Classification Using Outlier Detection and Variance Inflation Factor. Engineering, MAthematics

and Computer Science Journal (EMACS), 5(1), 17–23. https://doi.org/10.21512/emacsjournal.v5i1.9223

Mijayanti, T., & Helma, H. (2021). Bootstrap Aggregating Multivariate Adaptive Regression Splines (Bagging MARS) dan Penerapannya

pada Pemodelan Produk Domestik Regional Bruto (PDRB) di Provinsi Sumatera Barat. Journal of Mathematics

UNP, 6(4), 38–43. https://103.216.87.80/students/index.php/mat/article/view/12233

Novianto, A., Sriati, S., & Purnama, D. H. (2022). Resiliensi Ekonomi Kelompok Nelayan Perikanan Tangkap Kawasan Perkotaan.

Jurnal Sosiologi Andalas, 8(2), 115–129. https://doi.org/10.25077/jsa.8.2.115-129.2022

Nurhasanah, N.,Widiarti,W., Nurvazly, D. E., & Usman, M. (2024). Penerapan Model GeographicallyWeighted Logistic Regression

dengan Fungsi Pembobot Adaptive Gaussian Kernel pada Data Kemiskinan. Jambura Journal of Mathematics, 6(2), 204–

211. https://doi.org/10.37905/jjom.v6i2.26504

Pratiwi, L. P. S. (2020). Pemilihan Titik Knot Optimal Model Spline Truncated Dalam Regresi Nonparametrik Multivariabel dengan

GCV. Jurnal Matematika, 10(2), 78–90. https://doi.org/10.24843/JMAT.2020.v10.i02.p125

Purnaraga, T., Sifriyani, S., & Prangga, S. (2020). Regresi Nonparamaetrik Spline pada Data Laju Pertumbuhan Ekonomi di

Kalimantan. BAREKENG: Jurnal Ilmu Matematika dan Terapan, 14(3), 343–356. https : / / doi . org / 10 . 30598 /

barekengvol14iss3pp343-356

Putra, R., Fadhlurrahman, M. G., & Gunardi. (2023). Determination of the best knot and bandwidth in geographically weighted

truncated spline nonparametric regression using generalized cross validation. MethodsX, 10, 101994. https://doi.org/10.

1016/j.mex.2022.101994

Rahman, A. F., Syafriandi, S., Amalita, N., & Zilrahmi. (2023). Geographically Weighted Panel Regression Modeling on Human

Development Index in West Sumatra. UNP Journal of Statistics and Data Science, 1(3), 232–239. https://doi.org/10.

24036/ujsds/vol1-iss3/63

Serena, N., Sifriyani, S., & Darnah, D. (2021). Aplikasi Pendekatan Spline Truncated dalam Model GWR pada Pencemaran Daerah

Aliran Sungai Mahakam. MEDIA BINA ILMIAH, 16(2), 6439–6446. https://doi.org/10.33758/mbi.v16i2.1248

Sifriyani, Kartiko, S. H., Budiantara, I. N., & Gunardi. (2018). Development of nonparametric geographically weighted regression

using truncated spline approach. Songklanakarin Journal of Science and Technology, 40(4), 909–920. https://doi.org/

10.14456/sjst-psu.2018.98

Surenjani, D., Mursalini, W. I., & Yeni, A. (2023). Pengaruh Pertumbuhan Ekonomi dan Harga Saham Terhadap Pertumbuhan Laba

pada Perusahaan Pertambangan Sub Sektor Logam dan Mineral yang Terdaftar di Bursa Efek Indonesia. Jurnal Penelitian

Ekonomi Manajemen dan Bisnis, 2(1), 158–175. https://doi.org/10.55606/jekombis.v2i1.989

Downloads

Published

2025-07-31

Issue

Section

Articles

How to Cite

[1]
“Deterministic Economic Resilience Through Gross Regional Domestic Product Using Nonparametric Geographically Weighted Regression Spline Truncated”, JV, vol. 8, no. 2, pp. 139–150, Jul. 2025, doi: 10.30812/varian.v8i2.4303.