Forecasting the Amount of Water Discharge Based on the VARIMA Model

Authors

  • Hesti Meliyana Universitas Mataram, Mataram, Indonesia
  • Mustika Hadijati Universitas Mataram, Mataram, Indonesia
  • Lisa Harsyiah Universitas Mataram, Mataram, Indonesia

DOI:

https://doi.org/10.30812/varian.v8i2.3278

Keywords:

MAPE, VARIMA, Water Discharge

Abstract

Water is an absolutely necessary substance for every living thing. Clean water is the main requirement for ensuring human health and the environment PT. Air Minum Giri Menang (Perseroda). The purpose of this study is to determine the model and then predict the water discharge of PT. Air Minum Giri Menang using the obtained model which will be useful for the community and agencies so that the management, distribution, and use of clean water are more optimal. The method used in this study is VARIMA (Vector Autoregressive Integrate Moving Average) which can process data for more than one variable. The data used in this study is water discharge data produced and distributed in the period January 2018 to December 2021. The results show that the best model obtained is VARIMA(0,1,1) with model accuracy for water discharge data that produced and distributed based on the MAPE value of 4% and 5% which states that the forecasting results can be categorized as very good. This means that the VARIMA (0,1,1) model has provided very accurate results in predicting water discharge with very small forecasting errors, thus indicating that the model is very effective. Suggestions for further research are look for the alternative forecasting method that are overcome non-stationarity data other than data transformation.

Downloads

Download data is not yet available.

References

Afriliani, K., Martha, S., & Imro’ah, N. (2022). Model Vector Autoregresive Integrated Moving Average dalam Meramalkan Indeks

Harga Konsumen Kota Pontianak. Bimaster: Buletin Ilmiah Matematika, Statistika dan Terapannya, 11(4), 641–648.

https://doi.org/10.26418/bbimst.v11i4.57332

Amadea, M., & Winarno, A. (2016). Prediksi Produksi Debit Air Minum Per Bulan Dengan Metode Jaringan Syaraf Tiruan Backpropagation

(Studi Kasus: PDAM Tirta Moedal Semarang). JOINS (Journal of Information System), 1(01), 18–26.

https://doi.org/10.33633/joins.v1i01.1169

Asfihani, M. A., & Irhamah, I. (2017). Peramalan Volume Pemakaian Air Di PDAM Kota Surabaya dengan Menggunakan Metode

Time Series. Jurnal Sains dan Seni ITS, 6(1), 150–156. https://doi.org/10.12962/j23373520.v6i1.22978

Hermayani, H., Nohe, D. A., & Fathurahman, M. (2014). Mengatasi Heteroskedastisitas pada Model ARIMA dengan Menggunakan

ARCH-GARCH (Studi Kasus: Indeks Harga Konsumen Provinsi Kalimantan Timur Tahun 2005-2012). EKSPONENSIAL,

5(1), 73–80.

Ikbal, M. (2019). Perbandingan Model Vector Autoregressive Integrated Moving Average dengan Generalized Space Time

Autoregressive Integrated Moving Average untuk Peramalan Volume Pemakaian Air Bersih (Studi Kasus : Kota

Surabaya, Kab. Gresik Dan Kab. Sidoarjo) [Bachelor Thesis]. Universitas Airlangga.

Jannah, W., & Itratip, I. (2016). Kajian Pengolahan dan Distribusi Air Minum PDAM Giri Menang. Jurnal Ilmiah Mandala Education,

2(2), 351. https://doi.org/10.58258/jime.v2i2.699

Jusmawati, J., Hadijati, M., & Fitriyani, N. (2020). Penerapan Model Vector Autoregressive Integrate Moving Average dalam Peramalan

Laju Inflasi dan Suku Bunga di Indonesia. EIGEN MATHEMATICS JOURNAL, 3(2), 73–82. https://doi.org/10.

29303/emj.v3i2.62

Nugroho, A. A.-Z. (2022). Pemodelan Multivariate Time Series dengan Vector Autoregressive Integrated Moving Average

(VARIMA). Jurnal Riset Statistika, 2(2), 93–102. https://doi.org/10.29313/jrs.v2i2.1150

Panjaitan, H., Prahutama, A., & Sudarno, S. (2018). Peramalan Jumlah Penumpang Kereta Api Menggunakan Metode Arima, Intervensi

dan Arfima (Studi Kasus: Penumpang Kereta Api Kelas Lokal EkonomiDAOP IV Semarang). Jurnal Gaussian,

7(1), 96–109. https://doi.org/10.14710/j.gauss.7.1.96-109

Pertiwi, A., Dewi, L. F., Toharudin, T.,&Ruchjana, B. N. (2022). Penerapan Model Vector Autoregressive Integrated Moving Average

(VARIMA) untuk Prakiraan Indeks Harga Saham Gabungan dan Kurs Rupiah terhadap USD. Pattimura Proceeding:

Conference of Science and Technology, 2(1), 431–442. https://doi.org/10.30598/PattimuraSci.2021.KNMXX.431-442

Pratiwi, S., & Herlina, M. (2023). Pengaruh Harga Pangan terhadap Inflasi dengan Metode Vector Autoregressive Integrated Moving

Average. Jurnal Riset Statistika, 3(2), 87–96. https://doi.org/10.29313/jrs.v3i2.2690

Putri, I. D., & Oktaviarina, A. (2024). Penerapan Vector Autoregressive Integrated Moving Average (VARIMA) Pada Prediksi Indeks

Standar Pencemaran Udara. MATHunesa: Jurnal Ilmiah Matematika, 12(2), 364–373. https : / / doi . org / 10 . 26740 /

mathunesa.v12n2.p364-373

Suharsono, A., & Anggraeni, A. D. (2014). Peramalan Penjualan Sepeda Motor Tiap Jenis di Wilayah Surabaya dan Blitar dengan

Model ARIMA Box-Jenkins dan Vector Autoregressive (VAR). Jurnal Sains dan Seni ITS, 3(2), 326–331. https://doi.org/

10.12962/j23373520.v3i2.8071

Sutthichaimethee, P. (2017). Varimax Model to Forecast the Emission of Carbon Dioxide From Energy Consumption in Rubber and

Petroleum Industries Sectors in Thailand. Journal of Ecological Engineering, 18(3), 112–117. https://doi.org/10.12911/

22998993/70200

Wilujeng, F. R. (2018). Faktor–Faktor yang Memengaruhi Optimalisasi Penangkapan Ikan dengan Metode Transformasi Box Cox

pada Regresi Linier Berganda. JIEMS (Journal of Industrial Engineering and Management Systems), 11(1). https:

//doi.org/10.30813/jiems.v11i1.1011

Downloads

Published

2025-07-31

Issue

Section

Articles

How to Cite

[1]
“Forecasting the Amount of Water Discharge Based on the VARIMA Model”, JV, vol. 8, no. 2, pp. 125–138, Jul. 2025, doi: 10.30812/varian.v8i2.3278.