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ABSTRACT

Cluster analysis is used to group objects based on similar characteristics, so that objects in one cluster
are more homogeneous than objects in other clusters. One method that is widely used in hierarchi-
cal clustering is Ward’s algorithm. This method works by minimizing the sum of squared distances
between objects in one cluster (within-cluster variance) to produce optimal clustering. However, one
important assumption in using this method is that there is no high correlation between variables, or in
other words, the data must be free from multicollinearity. Multicollinearity can distort distance calcu-
lation, resulting in less accurate clustering results. To overcome this problem, a Principal Component
Analysis (PCA) approach is used to reduce the dimension and eliminate the correlation between vari-
ables by forming several mutually independent principal components. This research aims to cluster 56
districts/cities in Kalimantan Island based on 19 indicators of people’s welfare in 2023, using Ward’s
algorithm optimized through PCA. Validation of clustering results is done using the Silhouette Coef-
ficient value to assess the quality of clustering. This research method is a combination of Principal
Component Analysis (PCA) and hierarchical clustering using Ward’s algorithm. PCA was applied to
reduce 19 welfare-related indicators into four principal components that retained most of the essential
information in the dataset. The clustering process based on these components resulted in two opti-
mal clusters, as determined by a Silhouette Coefficient value of 0.651, which indicates a moderately
strong cluster structure. The results of this research indicate that the first cluster comprises 47 dis-
tricts/cities characterized by relatively low welfare levels. In comparison, the second cluster comprises
9 districts/cities with comparatively higher welfare conditions. These findings imply the existence of
considerable disparities in welfare among regions on Kalimantan Island. The results can be used as a
reference for policymakers in formulating more targeted and equitable development strategies.
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1. INTRODUCTION
Cluster analysis is a technique that combines objects based on similar characteristics. Objects in one group have a high level of

similarity (homogeneity) while objects in other groups have many differences (heterogeneity). The main objective of cluster analysis
is to group objects into several groups that have significant differences, so that each group consists of objects that have relatively
similar characteristics. Cluster analysis has two approaches: non-hierarchical and hierarchical [1]. The hierarchical method starts by
grouping two or more objects with the closest similarity, then moves on to other objects with the second closest similarity, and so
on, until the cluster forms a hierarchical cluster. On the other hand, non-hierarchical methods start by finding the desired number of
clusters and then perform the clustering process without following a hierarchical process [2]. The hierarchical method also has the
advantage of making the clustering formation visually visible, so that it is easy to understand and can help in choosing the optimal
cluster. Several algorithms can be used in hierarchical methods, including single linkage, complete linkage, average linkage, centroid
linkage, and ward [3].

Ward’s algorithm is a popular cluster analysis technique that focuses on minimizing within-group variance by minimizing the
sum of squares of differences between data within each cluster [4]. When compared to other hierarchical approaches, such as single
linkage, complete linkage, and average linkage, Ward has the advantage of forming homogeneous groups by minimizing variation
within clusters. When compared to other hierarchical methods such as single linkage, complete linkage, and average linkage, Ward’s
method produces clusters that are more compact and clearly separated. This advantage is supported by internal validation results using
the Silhouette Coefficient and the Davies–Bouldin Index, which show that objects within each cluster have a high degree of similarity
and good separation between clusters. Moreover, stability validation metrics, including the Average Proportion of Non-overlap (APN)
and the Average Distance Between Means (ADM), also demonstrate that the clustering results remain stable even under minor data
perturbations [5].

There is an assumption of cluster analysis that needs to be considered, namely, the presence or absence of a strong correlation
relationship between research variables. This can cause the analysis results to be inaccurate and difficult to understand properly
if there is a strong correlation between the independent variables. If this happens, one way to overcome this correlation is to use
Principal Component Analysis (PCA) [6]. PCA is a statistical method for reducing the dimensionality of data by transforming
correlated variables into several independent principal components without losing important information. PCA is useful when data
has many correlated variables and the calculations are based on the eigenvalues and eigenvectors of the covariance or correlation
matrix [7]. After the clustering results are obtained, the next step is to perform validation to assess the quality of the clusters formed.
One commonly used cluster validation method is the Silhouette Coefficient (SC). SC measures the quality of clustering by combining
the concepts of cohesion, namely the closeness between objects in one cluster, and separation, namely the separation between clusters.
This method is also used to assess the extent to which each object actually fits into the cluster it belongs to [8].

Cluster analysis can be used in a variety of fields, one of which is to categorize regions according to the level of people’s
welfare. People’s welfare is one of the important measures in assessing the quality of life and the level of development of a region.
Welfare can be defined as the fulfillment of the community’s basic needs, which are reflected through various indicators, such as
employment, poverty, education, health, population, income, consumption patterns, and housing and environmental conditions [9].
According to [10], The level of welfare is a key indicator of successful development because it includes aspects of security, prosperity,
and quality of life. In Indonesia, improving welfare is the main objective of economic development as stated in the Preamble of the
fourth paragraph of the 1945 Constitution. One of the areas of concern is the island of Kalimantan. According to the Central Bureau
of Statistics (2019), Kalimantan has shown significant progress in recent years, with the population expected to reach 20 million
by 2025. However, this growth poses new challenges, such as unequal population distribution, which could widen the income gap
between regions. Therefore, understanding the specific characteristics and problems in each province and formulating appropriate
development strategies are important steps in realizing equitable welfare for its people [11].

Several studies related to cluster analysis have been conducted previously. The study by [12] classified sub-districts in West
Sulawesi based on education indicators. Before clustering, the researchers examined the assumption of no strong correlation between
variables. Due to multicollinearity in three variable pairs, Principal Component Analysis (PCA) was applied before performing
Ward’s method, which resulted in three clusters. However, some gaps have not been resolved by previous research, namely the
absence of cluster validation methods such as the Silhouette Coefficient, and the limited application of clustering to a broader and
more diverse set of welfare indicators. The study by [13] grouped Indonesian provinces based on the economic impact of the Covid-
19 pandemic using various hierarchical methods and distance measures. Ward’s method with Euclidean distance produced the best
result, forming six clusters with a Silhouette value of 0.48. Nonetheless, this study focused only on macroeconomic impacts and did
not incorporate dimensionality reduction techniques like PCA or explore regional welfare disparities at the district/city level. The
difference between this research and the previous one is the integration of PCA for handling multicollinearity, the use of the Silhouette
Coefficient for cluster validation, and the focus on multidimensional welfare indicators at the district/city level in Kalimantan.
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This research aims to determine the number of principal components (PCs) from the results of variable reduction using Prin-
cipal Component Analysis (PCA), obtain the optimal number of clusters (K) using the PCA-based Ward algorithm validated by the
Silhouette Coefficient, and generate district/city groupings in Kalimantan based on indicators of people’s welfare. The contribution of
this research to the development of science lies in its methodological integration for handling high-dimensional socioeconomic data
in clustering analysis. Practically, this study contributes by providing data-driven insights into the welfare levels of districts/cities in
Kalimantan, which the government can use as a basis for formulating more targeted and effective development policies.

2. RESEARCH METHOD
This research is a non-experimental study that uses secondary data in the form of people’s welfare indicators in 2023 obtained

from the official website of the Central Statistics Agency (BPS) at https://www.bps.go.id. The data used covers the five provinces
on the island of Kalimantan, namely West Kalimantan, Central Kalimantan, South Kalimantan, East Kalimantan, and North Kali-
mantan. The indicators used represent various dimensions of welfare, such as poverty, education, health, employment, and economic
conditions. This data is the basis for conducting a cluster analysis to group kabupaten/kota in Kalimantan based on similar welfare
characteristics. The variables used in this study are indicators of people’s welfare, as shown in Table 1. Meanwhile, the research flow
is shown in Figure 1.

Table 1. Research Variables

Notation Variables Notation Variables
X1 Open Unemployment Rate X11 Percentage of Households with Access to Adequate Sanitation
X2 Labor Force Participation Rate X12 Health Complaints
X3 Total Labor Force X13 Population Density
X4 Poverty Line X14 Gross Regional Domestic Product per capita at constant prices
X5 Percentage of Poor Population X15 Per capita expenditure
X6 Poverty Depth Index X16 Average Expenditure per Capita on Food per Month
X7 Poverty Severity Index X17 Tenure Status of Owned Residential Building
X8 Average Years of Schooling X18 Number of Crimes
X9 Expected Years of Schooling X19 Human Development Index
X10 Percentage of Households with Access to Adequate Drinking

Water

Figure 1. Research Flowchart
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The analysis technique in this study was to use total sampling, where all members of the population were used as samples, and
the following data analysis methods were used:

1. Conduct descriptive statistical analysis.
2. Checking the assumption of correlation between research variables using the Variance Inflation Factor (VIF) value using Equation

(1). If there is a high correlation, PCA is performed. But if the assumptions are met, cluster analysis is done directly.

V IF l =
1

1−R2
l

(1)

where,

R2
l = 1−

∑n
i=1 (xil − x̂il)

2∑n
i=1 (xil − x̄il)

2 ;i = 1, 2, . . . , n and l = 1, 2, . . . , p (2)

In the formula, xil indicates the actual observation of the ith object on the lth variable, x̂il is the predicted value, and x̄il is the
average value of the observations for the respective variable.

3. Perform PCA analysis with the following steps:
a. Standardize the Zscore observation data using Equation (3).

Zil =
xil − x̄il

sl
(3)

with the average for each variable using Equation (4).

x̄l =
1

n

n∑
i=1

xil ; i = 1, 2, . . . , n and l = 1, 2, . . . , p (4)

and standard deviation using Equation (5).

sl =

√√√√ 1

n− 1

n∑
i=1

(xil − x̄l)
2 (5)

where Zil represents the standardized value of the ith observation on the lth variable, xil is the original (unstandardized)
value of the ith observation on the lllth variable, x̄l is the mean of the lth variable, and sl is the standard deviation of the lth
variable.

b. Calculate the correlation coefficient between variables using Equation (6).

rlm =
n (

∑n
i=1 ZilZim)− (

∑n
i=1 Zil)(

∑n
i=1 Zim)√

n (
∑n

i=1 Z
2
il)− (

∑n
i=1 Zil)

2
.

√
n (

∑n
i=1 Z

2
im)− (

∑n
i=1 Zim)

2
; l, m = 1, 2, . . . , p (6)

where rlm is the correlation coefficient between the standardized data of the lth and mth variables, Zil represents the stan-
dardized value of the ith observation on the lth variable, Zim is the standardized value of the ith observation on the mth
variable, and n is the total number of data observations used.

c. Create a correlation matrix based on the correlation coefficient using Equation (7).

R =


r11 r12 · · · r1p
r21 r22 · · · r2p

...
...

. . .
...

rp1 rp1 · · · rpp

 (7)
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Based on [14], to provide an assessment of whether or not the relationship between a variable is strong as shown in Table 2.

Table 2. Research Variables

Interval Coefficient Criteria
0.000-0.199 Very weak (negligible)
0.200-0.399 Weak
0.400-0.599 Medium
0.600-0.799 Strong
0.800-1.000 Very Strong

d. Calculate eigenvalues based on Equation (8) and eigenvectors according to Equation (9).

det (R− λI) = 0 (8)

and eigenvectors as per Equation (9).

(R− λI) v⃗ = 0 (9)

with,

I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 (10)

where λ represents the eigenvalue, v⃗ denotes the eigenvector, and I is the identity matrix.
e. Determine the number of principal components formed by looking at the eigenvalue ≥ 1.
f. Form a correlation matrix component that shows the magnitude of the variable correlation to the component score formed

using Equation (11).

rXl,PCt = v⃗it
√

λt (11)

where, PCt refers to the tth principal component, Xl represents the lth original variable, v⃗it denotes the ith eigenvector of
the tth principal component, and λt is the eigenvalue associated with the tth principal component.

g. Calculate the principal component (PC) score using Equation (12).

PCit = v⃗i1Zi1 + v⃗i2Zi2 + . . .+ v⃗ipZip (12)

4. Perform clustering on observation objects using the ward algorithm with the following steps:
a. Calculate the distance matrix between objects using the squared Euclidean distance according to Equation (13).

d2 (xil, xjl) =
∑p

l=1 (xil − xjl)
2 ; l = 1, 2, . . . , p

= (xi1 − xj1)
2
+ (xi2 − xj2)

2
+ . . .+ (xip − xjp)

2 (13)

where, d2 (xil, xjl) represents the squared Euclidean distance between the ith and jth observation data, p is the number of
variables, xil refers to the ith observation on the lth variable, and xjl denotes the jth observation on the lth variable.

b. Calculate the sum of Square Error (SSE) value for the combination of two pairs of clusters using Equation (14) and then
select the smallest value to combine.
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Iij = SSEij =
ni×nj

ni+nj

∑p
l=1 (xil − xjl)

2

=
ni×nj

ni+nj
d2 (xil, xjl)

(14)

where, Iij represents the distance between the ith and jth observation data, ni is the number of members in the ith cluster,
and nj is the number of members in the jth cluster.

c. Continue until n clusters are formed.

5. Calculate the silhouette coefficient value to see the optimal number of clusters with the following steps:
a. Calculate the average distance of the ith object to all objects in the same cluster using Equation (15).

ai =
1

nk − 1

nk−1∑
j=1

d(i, j) ; k = 1, 2, . . . ,K (15)

b. Calculate the average distance of the ith object with each different cluster object according to Equation (16) and then select
the smallest value with Equation (17).

di (k) =
1

nk

nk∑
j=1

d(i, j) (16)

bi = min di (k) (17)

c. Calculate the silhouette value for each ith object denoted by SC1(i) using Equation (18).

SC1 (i) =
bi − ai

max ai, bi
; i = 1, 2, . . . , n (18)

d. Calculate the average value SC1(i) of all objects belonging to the cluster into SC2(k) with Equation (19).

SC2 (k) =
1

nk

nk∑
j=1

SC1(i) (19)

e. Calculate the SCglobal value according to the formula in Equation (20).

SCglobal =

∑K
k=1 (nk × SC2(k))∑K

k=1 nk

(20)

Where, ai is the average distance of the ith observation data to all other data within the same cluster, while di(k) denotes the
average distance of the ith observation to all data in other clusters. The minimum of these distances is represented by bi. The
silhouette coefficient for each ith observation is denoted by SCi, while SC2(k) represents the silhouette coefficient for each
kth cluster. The global silhouette coefficient is denoted as SCglobal. Additionally, nk is the number of data points in the kth
cluster, and K indicates the total number of clusters.
To interpret the results of cluster evaluation with the silhouette coefficient method, the categories shown in Table 3 are used
as follows [15].
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Table 3. Categories Silhouette Coefficient

Silhouette Coefficient Interpretation
0.71 – 1.00 Strong cluster
0.51 – 0.70 Good or suitable cluster
0.26 – 0.50 Weak cluster
< 0.25 Cannot be called a cluster

6. Mapping and interpretation of cluster results.

3. RESULT AND ANALYSIS
3.1. Descriptive Statistical Analysis

Descriptive statistics are used to describe and present data in a concise and systematic form, making it easier to understand the
information contained therein. This includes measures such as minimum, maximum, mean and standard deviation values for each
welfare indicator. These summary statistics provide an initial picture of the distribution and diversity of the data, which is important
as a first step before further analysis is undertaken. The results obtained are shown in Table 4.

Table 4. Descriptive Statistics

Variable Minimum Maximum Mean Standard Deviation
X1 2.070 8.920 4.339 1.722
X2 62.950 75.880 69.438 3.772
X3 15,131.000 654,362.000 176,190.589 130,620.661
X4 365,262.000 854,967.000 586,288.018 110,300.595
X5 2.310 11.380 5.889 2.142
X6 0.140 2.470 0.745 0.437
X7 0.010 0.830 0.169 0.141
X8 6.350 11.650 8.576 1.184
X9 11.340 15.390 12.897 0.848
X10 48.980 99.910 79.222 13.831
X11 56.660 98.060 81.696 10.609
X12 7.020 39.420 25.549 7.455
X13 2.000 6,775.000 374.964 1,187.802
X14 10,437.000 229,770.000 54,660.036 49,010.091
X15 7,787.000 17,659.000 11,567.982 2,237.866
X16 539,231.290 1,084,778.000 779,403.037 110,652.659
X17 65.360 96.890 84.585 8.184
X18 25.000 1,805.000 382.893 365.576
X19 66.060 82.320 72.241 4.136

3.2. Checking the Assumption of Non-Multicollinearity
Multicollinearity checking is done using the Variance Inflation Factor (VIF) value to determine whether there is a high linear

relationship between independent variables, which can interfere with the further analysis process, especially in cluster analysis. The
calculation results are shown in Table 5.

Table 5. Descriptive Statistics

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

2.953 3.655 6.223 3.277 11.364* 52.083* 29.155* 13.947* 6.812 2.256
X11 X12 X13 X14 X15 X16 X17 X18 X19

3.288 1.602 3.075 2.961 8.532 2.488 4.148 12.987* 31.746*
Notes: (*) VIF value ≥ 10

Based on Table 5, six variables X5, X6, X7, X8, X18, and X19 have Variance Inflation Factor (VIF) values greater than 10
indicating the presence of multicollinearity. Multicollinearity can lead to distortion in cluster formation. Therefore, Principal Com-
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ponent Analysis (PCA) was applied to reduce the number of variables and eliminate correlations among them before performing
cluster analysis.

3.3. Principal Component Analysis
Principal Component Analysis (PCA) is a dimension reduction method that forms new uncorrelated variables to overcome

multicollinearity. The application steps are as follows:

1. Conduct data standardization
Data standardization is necessary to equalize the scale of variables, prevent the dominance of large-scale variables, and ensure
more accurate analysis results. This study uses Zscore standardization in Equation (3), which changes the data so that it has a
mean of 0 and a standard deviation of 1, so that the variables are in the same range (see in Table 6).

Table 6. Data Standardization Results

Districts/Cities Z1 Z2 · · · Z19

Sambas 0.407 0.870 · · · -0.397
Bengkayang -0.824 0.926 · · · -0.655

...
...

...
. . .

...
Kota Tarakan 0.529 -0.874 · · · 1.279

2. Calculating the correlation coefficient
To determine how strong the relationship between two variables is, a correlation coefficient is calculated. Each variable is paired
with another variable, resulting in correlation values for each pair. These values are then organized into a matrix called a correlation
matrix, which provides an overall picture of the linear relationship between variables in the dataset. The correlation value is
obtained using Equation (7).

3. Form a correlation matrix
After the correlation coefficient between variables is calculated, the correlation matrix is formed based on Equation (7) as follows:

R =


1 −0.616 0.358 · · · 0.579

−0.616 1 −0.460 · · · −0.565
0.358 −0.460 1 · · · 0.463

...
...

...
. . .

...
0.579 −0.565 0.463 · · · 1


19×19

Referring to Table 2, the correlation between the open unemployment rate (X1) and the labor force participation rate (X2) is
-0.616. This value indicates a strong negative relationship between the two variables. This means that when the labor force
participation rate increases, the open unemployment rate tends to decrease and vice versa.

4. Determine eigenvalues and eigenvectors
The eigenvalue is calculated based on Equation (8) and the eigenvector from Equation (9). The results of the eigenvalue (λ)
calculation are shown below.

λ =



λ1

λ2

λ3

λ4

λ5

...
λ19


=



8.048
2.481
1.940
1.292
0.941

...
0.011


19×1
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Based on the eigenvalue, nineteen eigenvalues were obtained. The formation of principal component (PC) is selected based on
the criteria λ ≥ 1. So from the nineteen eigenvalues obtained, only four eigenvalues meet the criteria, namely λ1 = 8.048,
λ2 = 2.481, λ3 = 1.940, and λ4 = 1.292. Furthermore, the eigenvectors are obtained as follows:

v̄1 =


0.232
−0.218
0.177

...
0.366


19×1

, v̄2 =


−0.087
0.137
−0.258

...
−0.051


19×1

, v̄3 =


−0.199
0.167
−0.344

...
0.036


19×1

, v̄4 =


−0.159
0.441
0.121

...
0.039


19×1

5. Calculating the components of the correlation matrix
The correlation component describes how strong the relationship is between a variable and the resulting principal component score.
This component is the result of projecting the original data into a new space formed by eigenvectors. Each object (district/city) has
a score on each component that can be used as a concise representation of the original data. The correlation matrix components
are obtained based on Equation (11).

6. Form the principal component equation
The next step is to form the equation of each principal component (PC). Based on the eigenvector results, Equation (12) can be
written as follows:

PCi,1 = 0.232Zi,1 − 0.218Zi,2 + . . .+ 0.335Zi,19

PCi,2 = −0.087Zi,1 + 0.137Zi,2 + . . .− 0.051Zi,19

PCi,3 = −0.199Zi,1 + 0.167Zi,2 + . . .+ 0.035Zi,19

PCi,4 = −0.159Zi,1 + 0.441Zi,2 + . . .+ 0.039Zi,19

7. Calculating the principal component score
Based on the PC equation that has been formed, the results of the PC score calculation are shown in Table 7.

Table 7. Reduction Results Using PCA

Districts/Cities PC1 PC2 PC3 PC4

Sambas -1.517 -0.269 -2.232 2.332
Bengkayang -2.632 0.324 -0.944 1.062

...
...

...
...

...
Kota Tarakan 3.572 -1.027 1.018 -0.099

3.4. Clustering with Ward’s Algorithm
Clustering is performed using a new dataset of PCA-reduced results. The stages in clustering using the ward algorithm are as

follows:

1. Calculating the squared Euclidean distance matrix
The distance between objects in the observation can be calculated using the squared Euclidean distance, which is by summing
the squares of the differences of each variable value between two objects. This distance is used as the basis in determining the
similarity between objects. The results of the calculation of the Euclidean square distance matrix using Equation (13) are shown
in Table 8.

Table 8. Squared Euclidean Distance Matrix

Districts/Cities Sambas Bengkayang . . . Kota Tarakan
Sambas 0 4.866 · · · 42.940

Bengkayang 4.866 0 · · · 45.509
...

...
...

. . .
...
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Districts/Cities Sambas Bengkayang . . . Kota Tarakan
Kota Tarakan 42.940 45.509 · · · 0

2. Calculating the SSE value for the combination of two pairs of clusters
After obtaining the distance matrix between objects, the next step is to calculate the Sum of Squared Errors (SSE) value for
each possible merger of two clusters. SSE is used to measure the total variation in the cluster, where a smaller value indicates a
higher level of closeness or similarity of characteristics between objects. The calculation of the SSE value based on Equation 14
revealed that the merger with the smallest SSE value first occurred between Hulu Sungai Selatan Regency and Hulu Sungai Tengah
Regency, which amounted to 0.099. In iteration 2, the cluster had the smallest SSE value when merged with Hulu Sungai Utara
District, which amounted to 0.170. This low SSE value indicates that the three districts have high similarity and form a relatively
homogeneous cluster. This merging pattern can also be seen visually in Figure 2, the dendrogram of the clustering results using
the ward algorithm, where the three districts are joined in the same branch with a relatively short separation distance.

Figure 2. Clustering Dendrogram Using Ward’s Algorithm

3.5. Validation of the Optimal Number of Clusters Using the Silhouette Coefficient
Cluster validation aims to assess the quality of the clustering that has been done and determine the optimal number of clusters.

One commonly used internal validation method is the Silhouette Coefficient (SC), which measures how similar an object is to its own
cluster compared to other clusters. Given an example of calculation for the number of two clusters with the following steps:

1. Calculate the average distance of the ith object to all objects in the same cluster. An example of calculating the average distance
from the first data, namely Sambas Regency, based on Equation 15, is as follows.

aSambas = 1
46 (4.866 + 10.099 + . . .+ 14.183)

= 20.034

2. Calculate the average distance from Sambas Regency to all objects in other clusters based on Equation 16 as follows.

dSambas (1) = 1
9 (75.692 + 50.655 + . . .+ 49.940)

= 61.285
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Because in this calculation, there are only two clusters, the value of di (k) = bi.

bSambas = 61.285

3. Calculate the SC value by using the asambas and bsambas values previously obtained in accordance with Equation (18).

SC1(Sambas) = bSambas−aSambas

max aSambas,bSambas

= 61.285−20.034
max 20.034 , 61.285

= 0.673

The calculation of SC values for other districts/cities was done using the same formula as for the Sambas District. The results of
the SC value for each district/city are presented in Table 9.

Table 9. Local SC Value of Each District/City

Districts/Cities Nilai SC
Sambas 0.673

Bengkayang 0.806
Landak 0.782

...
...

Kota Tarakan 0.598

Next, calculate the Local SC average of all objects in the cluster using Equation (19).

SC2 (1) =
1
47 (0.673 + 0.806 + . . .+ 0.802) = 0.642

SC2 (2) =
1
9 (0.766 + 0.738 + . . .+ 0.598) = 0.699

4. Calculating the overall cluster average using Equation (20).

SCglobal =
∑2

k=1 (nk×SC2(k))∑2
k=1 nk

= (n1×SC2(1))+(n2×SC2(2))
n1+n2

= (47×0.642)+(9×0.699)
47+9

= 36.462
56

= 0.651

Based on the calculation results, the global Silhouette Coefficient value for the number of two clusters is 0.651. This value
indicates that the clustering results have good quality, where each object tends to be closer to its own cluster members and there is
a clear separation between clusters. Similar calculations were also carried out for the number of clusters of three, four, and five.
The results of the Silhouette Coefficient value for each number of clusters are presented in Table 10.

Table 10. Comparison of Validation Results Based on SC Value

Number of Clusters SC Value Interpretation
2 0.651 Good
3 0.496 Weak
4 0.504 Weak
5 0.516 Good

International Journal of Engineering and Computer Science Applications (IJECSA)



132 ISSN: 2828-5611

Based on Table 10, the highest Silhouette Coefficient value was obtained in the formation of two clusters, which amounted to
0.651. Therefore, it can be concluded that the most optimal grouping of districts/cities in Kalimantan Island based on community
welfare indicators is two clusters.

3.6. Mapping and Interpretation of Cluster Results
After the clustering process is carried out and the optimal number of clusters is determined based on the Silhouette Coefficient

value, the next step is to map and interpret the cluster results. Mapping is done to visualize the distribution of areas in each cluster so
that spatial patterns between areas can be observed more clearly. The map of the distribution of areas based on the clustering results
is presented in Figure 3.

Figure 3. Distribution Map of Optimal Grouping Results

Figure 3 shows the results of grouping 56 districts/cities in Kalimantan into two clusters based on indicators of people’s welfare.
A total of 47 districts/cities belong to Cluster 1, while 9 districts/municipalities belong to Cluster 2. This map shows the differences
in welfare characteristics between regions, where Cluster 2 is dominated by large cities on the island of Kalimantan that have more
advanced socio-economic conditions. Furthermore, the characteristics of each cluster were interpreted by comparing the average
value of the variables in each cluster. The calculation results are presented in Table 11.

Table 11. Cluster Results

Variable Cluster Variable Cluster
1 2 1 2

X1 3.984 6.190 X11 79.742 91.903
X2 70.145 65.743 X12 26.061 22.873
X3 154,870.766 287,527.444 X13 59.021 2,024.889
X4 558,968.191 728,958.222 X14 48,103.806 88,898.122
X5 6.180 4.368 X15 10,905.702 15,026.556
X6 0.797 0.474 X16 763,740.210 861,197.800
X7 0.184 0.089 X17 87.134 71.270
X8 8.175 10.670 X18 271.340 965.444
X9 12.612 14.387 X19 70.730 80.133
X10 76.298 94.493

Based on Table 11, it can be seen that there are significant differences between the mean values of the variables in cluster 1
and cluster 2. Cluster 2 shows higher mean values compared to cluster 1 in most of the variables analyzed. Cluster 1 has a lower
unemployment rate and a slightly higher labor force participation rate compared to cluster 2. However, cluster 1 shows a higher
poverty rate with a higher percentage of poor people, poverty depth index, and poverty severity index than cluster 2, indicating
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greater economic inequality. Cluster 2 excels in education, with a higher average and expected years of schooling, reflecting a better
quality of education. Access to basic facilities such as safe drinking water and proper sanitation is also better in cluster 2, which
implies better health conditions with a lower percentage of the population experiencing health complaints. Cluster 2 also shows
higher economic well-being with higher Gross Regional Domestic Product per capita, expenditure per capita, and expenditure on
food. However, population density per square kilometer is higher in cluster 2, reflecting a trend towards more significant population
concentration. Although crime rates are higher in cluster 2, the human development index remains higher, indicating a better quality
of life. Overall, cluster 1 can be categorized as a cluster with a lower level of welfare, while cluster 2 shows characteristics of an area
with a higher level of welfare. The difference in average values between the variables in these two clusters illustrates the inequality
in welfare between the grouped regions.

The findings of this research are that the initial 19 variables related to people’s welfare were successfully reduced into four
principal components using Principal Component Analysis (PCA), which retained most of the essential information in the dataset.
Based on these components, clustering using Ward’s algorithm produced two optimal clusters, with a Silhouette Coefficient value of
0.651, indicating a fairly strong cluster structure. Cluster 1 consists of 47 districts/cities with relatively lower welfare levels, while
Cluster 2 consists of 9 districts/cities with higher welfare levels. These differences are reflected in indicators such as poverty rate,
education level, access to basic services, and economic capacity. The results of this research are in line with previous studies, such as
[12], which demonstrated that applying PCA before clustering can effectively address multicollinearity and improve the separation
between clusters. Furthermore, the study by [13] supports the use of Ward’s method with Euclidean distance, which yielded the best
Silhouette score compared to other hierarchical clustering methods. These findings strengthen the methodological foundation of this
research and confirm the validity of the clustering results obtained.

4. CONCLUSION
Based on the analysis, it can be concluded that the application of Ward’s algorithm optimized with Principal Component

Analysis (PCA) can reduce the data into four principal components (PC) with eigenvalues ≥ 1, namely λ1 = 8.048; λ2 = 2.481; λ3

= 1.940; and λ4 = 1.292. These four principal components were used as the basis in the clustering process. The clustering results
showed that the optimal number of clusters was two with a Silhouette Coefficient value of 0.651, indicating a fairly good quality of
cluster separation. Cluster 1 consists of districts/cities that tend to have higher values on the variables of labor force participation
rate, percentage of poor people, poverty depth index, poverty severity index, percentage of population with health complaints, and
tenure status of owned residential buildings. These characteristics indicate that cluster 1 is an area group with a relatively low level
of welfare. Meanwhile, cluster 2 is characterized by higher values on the variables of open unemployment rate, total labor force,
poverty line, average years of schooling, expected years of schooling, access to drinking water and proper sanitation, population
density, Gross Regional Domestic Product per capita at constant prices, expenditure per capita, average food expenditure per capita
per month, number of crimes, and human development index. In general, these characteristics suggest that cluster 2 comprises areas
with a higher level of welfare. The results of this clustering provide an overview of the welfare characteristics between regions in
Kalimantan Island, so that it can be used as a reference for the government or policymakers in formulating development programs
that are more targeted based on the conditions of each cluster.
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