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ABSTRACT

The eye is one of the vital human senses and is the main organ for vision. One of the visual impair-
ments that requires special attention is blindness, and cataracts are a major cause of it. A cataract
is a condition in which the eye’s lens becomes cloudy due to changes in the lens fibers or materials
inside the capsule. This cloudiness blocks light from entering the eye and reaching the retina, sig-
nificantly interfering with vision. Early detection of cataracts is essential to prevent blindness. An
efficient image-based classification model is needed for cataract detection. This study aims to test
the Convolutional Neural Network (CNN) model for early cataract detection by exploring the use of
several optimization algorithms: Adaptive Moment Estimation (Adam), Root Mean Square Propaga-
tion (RMSprop), Adaptive Gradient Algorithm (AdaGrad), and Stochastic Gradient Descent (SGD).
The research method follows an experimental approach, where eye image datasets are trained using
the same CNN architecture but with different parameter configurations. The results show that the
Adam optimizer, with a data split of 70% for training, 15% for validation, and 15% for testing over
50 epochs, produced the best results, achieving accuracies of 94%, 93%, and 93%, respectively. Other
optimizers performed reasonably well but could not match Adam’s stability and accuracy. The im-
plication of this research is that the choice of optimizer and hyperparameter configuration plays a
crucial role in improving the performance of image-based cataract detection models.
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1. INTRODUCTION
The eye is one of the human sensory organs that functions as the organ of vision [1]. One of the visual impairments that requires

serious attention is blindness [2]. Various types of eye disorders include cataracts, glaucoma, and retinal diseases [3]. A cataract is a
condition in which cloudiness occurs in the lens fibers or materials inside the capsule, making it difficult for light to reach the retina
and thus disturbing vision [4, 5]. According to estimates by the World Health Organization (WHO), cataracts are responsible for
nearly 50% of all global cases of blindness [6]. Globally, Indonesia ranks second in the number of cataract cases, following Ethiopia.
However, people often do not realize the symptoms of cataracts, as it is difficult to distinguish between normal eyes and those in
the early stages of cataract development [7]. Therefore, early detection of cataracts is crucial to prevent blindness [8]. Cataracts
can be classified based on eye images using digital image analysis techniques [9]. Eye images obtained through medical imaging
methods, such as fundus photography or slit-lamp imaging [10], contain important visual information that helps distinguish between
normal eyes and those affected by cataracts. By extracting features from the images, such as brightness, texture, contrast, and lens
opacity, the classification system can detect patterns that indicate the presence of cataracts. Using image processing techniques and
classification algorithms based on machine learning or deep learning, cataract identification can be carried out automatically, quickly,
and accurately [11]. This approach not only supports early detection but also reduces the reliance on manual examinations that require
specialists. Therefore, developing image-based classification systems is a strategic step toward more efficient cataract diagnosis.

Deep learning technology, especially through the use of Convolutional Neural Networks (CNN), is one of the most commonly
used classification methods for solving problems related to Object Detection and Image Classification [11, 12]. In a study by [11], eye
disease classification was performed using CNN with the VGG16 architecture, achieving an accuracy of 82.63%. Another study by
[10] classified cataracts based on fundus images using a CNN model and achieved an accuracy of 92%. A further study by [13] also
used CNN for cataract classification and achieved an accuracy of 85%, while [14] applied CNN for classifying banana leaf diseases
and obtained an accuracy of 92%. The research gap lies in the limited exploration of hyperparameter tuning, despite its recognized
importance in enhancing model performance. Although previous studies have employed various optimizers such as Adam, RMSprop,
SGD, and AdaGrad, few have thoroughly examined how proper adjustments to hyperparameters, such as the number of epochs, data
split (training, validation, and testing), and optimizer selection, affect model accuracy and effectiveness in classification tasks. This
indicates that hyperparameter tuning is a crucial factor for achieving optimal results. Therefore, this study addresses the gap by
emphasizing the significance of hyperparameter adjustments to improve the model’s ability to recognize patterns more accurately and
efficiently. It demonstrates that selecting the right hyperparameter values, including the appropriate optimizer, plays a vital role in
boosting model accuracy, distinguishing this research from previous work.

This study aims to evaluate the CNN model for early cataract detection by exploring the use of several optimization algo-
rithms, including Adaptive Moment Estimation (Adam), Root Mean Square Propagation (RMSprop), Adaptive Gradient Algorithm
(AdaGrad), and Stochastic Gradient Descent (SGD). These schemes include setting the number of epochs, the proportion of data
division (training, validation, and testing), and using different optimizers. Through these tests, the goal is to find the best combination
of parameters that can produce optimal model accuracy in the classification process. The main contribution of this study is to pro-
vide deeper insight into how the choice of optimizer affects model performance in classification tasks, particularly by comparing the
Adam optimizer with others such as RMSprop, SGD with Momentum, and AdaGrad. The study shows that Adam generally delivers
better and more consistent results in training, validation, and testing accuracy than the other optimizers, significantly contributing to
selecting the right optimizer for different deep learning models.

2. RESEARCH METHOD
Figure 1 illustrates the flow of this study to make the research process easier to understand. The figure shows the steps taken to

obtain the results of this research. The initial stage begins with data collection, followed by dataset processing, preprocessing, feature
extraction, and then the model training and testing stages.
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Figure 1. Research Flow

2.1. Data Collection
In this study, the data used to detect cataract disease consists of eye images. The secondary data was obtained from the

Kaggle platform (https://www.kaggle.com/code/babajideabiola/eye-disease-classification). The dataset includes several images of
eyes classified based on their health condition—normal eyes and eyes with cataracts. 1,433 images were divided into 719 images of
cataract-affected eyes and 714 images of normal eyes. A sample of the dataset used in this study is shown in Table 1.

Table 1. Dataset sample

No Dataset Sample Total

1 Normal 714

2 Cataract 719

Tables 2 and 3 show how a dataset of 1,433 image samples was divided into three main parts: training, validation, and testing,
with different proportions for experimental purposes. In Table 2, the training data were split into three scenarios: 80%, 70%, and 60%
of the total data, resulting in 1,146, 1,000, and 857 training samples, respectively. This division aimed to examine how the amount of
training data affects model accuracy. Table 3 displays the data distribution for validation and testing, with proportions of 10%, 15%,

International Journal of Engineering and Computer Science Applications (IJECSA)

https://www.kaggle.com/code/babajideabiola/eye-disease-classification


84 ISSN: 2828-5611

and 20% each. For instance, when using 10% for validation and testing, there are 142 and 145 samples, respectively. These numbers
vary according to the set proportions; for example, at 20%, there are 287 samples for validation and 289 for testing. This distribution
strategy allows for a more comprehensive evaluation of the model under different data scenarios.

Table 2. Training data division

Number of Dataset
Data Type 80% 70% 60%
Train 1146 1000 857

Table 3. Division of validation and testing datasets

Number of Dataset
Data Type 10% 15% 20%
Validation 142 216 287
Testing 145 217 289

2.2. Preprocessing
Preprocessing is important in preparing the dataset and making the next processes easier. In this stage, the dataset is analyzed

and processed before it goes into the feature extraction phase. The preprocessing steps carried out include resizing and image
augmentation. The researcher resized the original images from 256x256 pixels to new dimensions of 150x200 pixels. This process
involved adjusting the image scale while maintaining optimal proportions to ensure the images remained clear and informative after
resizing. Figure 2 shows the result of the resizing process, where the original image size of 256x256 pixels was changed to 150x200
pixels. As is known, a large dataset is needed to achieve the best performance in deep learning. Since the variation of objects in
this study is relatively limited, data augmentation was used to increase the diversity of the data. Data augmentation is a method of
manipulating data without removing important elements. The augmentation processes include rescaling, shearing, rotation, zooming,
filling, and flipping.

Figure 2. Resized sample image

2.3. Model implementation
To achieve high accuracy in eye image detection systems, cataract eye images must first be trained using a designed CNN

model. Before training begins, the dataset is divided into several parts: training, validation, and testing data. The dataset is split using
various ratios, including 80%:10%:10%, 75%:15%:15%, and 60%:20%:20%. This training process aims to help the model learn the
unique features of each eye image, so it can determine which neurons should be activated when detecting the image. Additionally,
different types of optimizers are used in this study to assess their impact on model performance. Optimizers are algorithms that
update neural network weights during training so the model can reach convergence more quickly and accurately. The optimizers used
include Adam, Adagrad, RMSprop, and SGD. After initializing the necessary parameters and hyperparameters, the next step is to
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define the CNN architecture for training. The designed CNN architecture is then trained to recognize patterns and characteristics in
cataract eye images to accurately detect the presence of cataract disease. The details of the CNN model architecture used in this study
are shown in Figure 3.

Figure 3. CNN Architecture Model

2.4. Model Evaluation
This study uses accuracy as the primary metric to evaluate the performance of the CNN method in detecting cataract eye

conditions. Accuracy measures how correctly the model classifies eye images into the appropriate categories, either cataract or
normal. A higher accuracy indicates better model performance in consistently recognizing visual patterns related to cataracts across
training, validation, and testing data. The accuracy is calculated using Formula (1) [15–17].

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (1)

3. RESULT AND ANALYSIS
One of the most important components for successful image-based disease detection is the quality of the training results. The

training outcomes significantly affect the test performance. Testing was carried out using a simpler architecture consisting of 3 CNN
layers. Various optimizers were used, including SGD, AdaGrad, RMSprop, and Adam, with different epoch settings such as 5, 15,
25, and 50. The dataset consisted of 1,433 images, divided into training, validation, and testing data with different ratios: 60%:40%,
70%:30%, and 80%:20%, for detecting cataracts in eye images. The following are the results of the dataset splits, epochs, and trials
using several optimizers:

3.1. Adam Optimizer
The results in Table 4 show that using the Adam optimizer leads to a consistent increase in accuracy as the number of epochs

grows. Training accuracy improves from about 73–77% at epoch 5 to 90–94% at epoch 50, depending on the proportion of training
data (60%, 70%, 80%). This suggests the model is learning effectively over time. Validation accuracy also shows a significant
increase, from 56–70% at the beginning to around 89–96% by epochs 25 to 50, indicating the model’s ability to handle unseen data.
Table 5 presents the model’s accuracy on entirely new testing data after training. The testing accuracy remains high, ranging from
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90% to 93%, depending on the test data proportion (10%, 15%, 20%). This consistent accuracy shows that the model performs stably
and does not overfit, maintaining high results on previously unseen data. Overall, using the Adam optimizer in training improves
model accuracy during training, validation, and testing. The stable improvement in accuracy across all stages shows the model can
learn data patterns well and generalize effectively to new data, making Adam a suitable choice for optimizing model learning on this
dataset.

Table 4. Training and validation accuracy results of the Adam optimizer

Epoch Training Validation
80% 70% 60% 10% 15% 20%

5 74% 77% 73% 57% 70% 56%
15 85% 84% 83% 92% 90% 73%
25 86% 88% 86% 91% 96% 89%
50 92% 94% 90% 92% 93% 92%

Table 5. Adam optimizer testing accuracy results

Test
10% 15% 20%
90% 93% 91%

3.2. RMSprop Optimizer
The results in Table 6 show that using the RMSprop optimizer gradually increases training accuracy as the number of epochs

increases. Training accuracy improves from 69–72% at epoch 5 to 85–88% at epoch 50, depending on the training data proportion.
Validation accuracy increases, though not as significantly as training accuracy, from 64–71% at the beginning to 78–87% by epoch 50.
This suggests that RMSprop can effectively train the model, although the improvement is not as rapid as with the Adam optimizer.
Table 7 shows that the model’s testing accuracy on new data remains relatively high and stable: 92% for 10% and 20% test data
proportions, and slightly lower at 86% for 15%. This indicates that the RMSprop-trained model still generalizes well, although slight
fluctuations depend on the test data proportion. Overall, RMSprop yields fairly good training and testing results with consistent
accuracy improvements. However, compared to Adam, RMSprop tends to produce slightly lower validation and testing accuracy in
some scenarios, suggesting that while effective, it may require further tuning of parameters or model structure to achieve optimal
performance.

Table 6. Training accuracy results and validation of the RMSprop optimizer

Epoch Training Validation
80% 70% 60% 10% 15% 20%

5 72% 72% 69% 64% 71% 67%
15 79% 80% 78% 69% 79% 77%
25 81% 84% 82% 78% 80% 79%
50 85% 87% 88% 78% 87% 84%

Table 7. Testing accuracy results using the RMSprop optimizer

Test
10% 15% 20%
92% 86% 92%

3.3. AdaGrad Optimizer
Table 8 presents the model’s training and validation accuracy results using the AdaGrad optimizer with various training and

validation data proportions. At epoch 5, training accuracy ranged from 70–72%, while validation accuracy was between 60–68%. As
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the epochs progressed to 50, training accuracy gradually improved to 83–86%, and validation accuracy increased to 80–84%. This
shows that AdaGrad supports gradual learning, although its improvement rate is slower than optimizers like Adam. Table 9 shows
the testing accuracy on previously unseen data, with results of 88% for a 10% test set, 86% for 15%, and 89% for 20%. While
these results are fairly good, they are slightly lower than those obtained using Adam and RMSprop, indicating that AdaGrad can still
generalize well, but not as effectively as the other two optimizers. Overall, AdaGrad provides a stable model with gradual accuracy
improvements. However, its performance in training, validation, and testing is slightly lower than Adam and RMSprop, suggesting
that alternative optimizers may be preferable for achieving better results, especially with more complex datasets and models.

Table 8. Training and validation accuracy results using the AdaGrad optimizer

Epoch Training Validation
80% 70% 60% 10% 15% 20%

5 56% 64% 61% 57% 66% 54%
15 60% 69% 64% 68% 66% 61%
25 68% 71% 68% 64% 66% 69%
50 72% 76% 73% 80% 72% 67%

Table 9. Testing accuracy results using the AdaGrad optimizer

Test
10% 15% 20%
80% 73% 73%

3.4. Optimizer SGD
Table 10 shows that the SGD optimizer produced varied results during training and validation. Training accuracy increased

from around 69–72% at epoch 5 to 72–91% by epoch 50, depending on the proportion of training data. A similar trend was seen
in validation accuracy, which fluctuated but generally improved from 63–80% early on to 78–92% by epoch 50. Despite these
improvements, epoch inconsistencies indicate that SGD training is more sensitive to parameter settings and data proportions. Table
11 presents the model’s test accuracy on previously unseen data, ranging from 80–87% depending on the test data split (10%, 15%,
20%). These results show that models trained with SGD can still generalize fairly well, though not as effectively as those trained
with Adam or RMSprop, which usually achieve over 90% accuracy. While SGD can improve accuracy over time, its results are less
stable, suggesting that adaptive optimizers like Adam or RMSprop are generally better suited for achieving consistent and optimal
performance.

Table 10. Training and validation accuracy results using the SGD optimizer

Epoch Training Validation
80% 70% 60% 10% 15% 20%

5 69% 72% 70% 80% 63% 64%
15 79% 80% 83% 77% 75% 81%
25 68% 85% 84% 64% 78% 82%
50 72% 89% 91% 80% 78% 92%

Table 11. Testing accuracy results using the SGD optimizer

Test
10% 15% 20%
80% 82% 87%

Based on the results of various experiments, the best scheme using the Adam optimizer was found at 50 epochs with a dataset
split of 70% for training and 30% for testing, resulting in 94% accuracy on training data, 93% on validation data, and 93% on testing
data. For the RMSprop optimizer, the best scheme was also at 50 epochs with a 70%-30% dataset split, producing 87% accuracy
on training data, 86% on validation data, and 87% on testing data. The best scheme using the AdaGrad optimizer was at 50 epochs
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with an 80%-20% dataset split, yielding 72% accuracy on training data, 80% on validation data, and 80% on testing data. The best
result using the SGD optimizer was achieved at 50 epochs with a 60%-40% dataset split, reaching 91% accuracy on training data,
87% on validation data, and 92% on testing data. The findings of this research show that the CNN model with the Adam optimizer
outperformed other optimizers under the 50-epoch and 70%-30% dataset split scheme. This model achieved 94% accuracy on training
data, 93% on validation data, and 93% on testing data. These results are consistent with previous studies [18–21], which also found
that Adam provides higher accuracy than other optimizers. Based on these findings, this model is considered the most optimal and
will be used to detect eye images and identify potential cataract symptoms.

Adam performs better than other optimizers because it combines the advantages of Momentum and RMSprop techniques. By
using the first and second moment estimates of gradients, Adam adaptively adjusts the learning rate for each parameter. This makes
training more stable, faster to converge, and effective in handling sharp changes in gradients. Unlike AdaGrad, which slows learning
over time, or SGD, which requires manual learning rate tuning, Adam maintains consistent accuracy even in early epochs and across
different training data proportions. Adam is also more robust across various dataset sizes and distributions. The results in the table
show that training, validation, and testing accuracy with Adam are generally high and stable, indicating good generalization ability.
Compared to RMSprop and SGD, which show performance fluctuations, Adam consistently delivers the best results in almost all
scenarios. This advantage makes Adam the preferred choice for training machine learning and deep learning models, especially
when stability and efficiency are critical.

4. CONCLUSION
Based on the results of this study, it can be concluded that the Adam optimizer provides the best performance compared to

RMSprop, AdaGrad, and SGD in terms of training, validation, and testing accuracy. Adam consistently maintains stability and im-
proves accuracy across different proportions of training and validation data, making it more effective in handling the complexity and
uncertainty of datasets. This advantage indicates that Adam is well-suited for various deep learning models requiring efficient train-
ing times without sacrificing result quality. The novelty of this study lies in testing and comparing four commonly used optimizers,
such as Adam, RMSprop, AdaGrad, and SGD, on datasets with varying sizes and data proportions. The study highlights Adam’s
superiority in enhancing stability and achieving faster convergence compared to other optimizers, which often face challenges regard-
ing stability and efficiency, particularly in the early epochs. Future studies should evaluate cataract data using various classification
models and different parameter tuning combinations to develop a more effective classification model.
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